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Résumé. Nous proposons une méthode de sélection et de tri de covariables associées à
une variable d’intérêt, dans le cadre de données dépendantes et de grande dimension, mais
avec peu d’observations. Une première étape consiste à décorréler les covariables: après
avoir effectué un clustering des covariables, nous décorrélons les covariables de chaque
cluster via l’analyse en facteurs latents. La seconde étape sélectionne et trie les covariables
en utilisant une agrégation de méthodes et tests statistiques. Après quelques simulations,
nous appliquons notre méthode sur des données transcriptomiques (p = 6810 covariables)
de n = 37 patients atteints d’un cancer du poumon, et ayant reçu un traitement. Notre
méthode permet de sélectionner les covariables liées à la réussite ou non du traitement.
Nous obtenons différents profils de patients suivant leur temps de survie.

Mots-clés. Sélection de variables correlées, Grande dimension, Tests multiples, Agrégation
de méthodes, Classement, Profils génétiques.

Abstract. We propose a methodology to select and rank covariates associated to a
variable of interest in a context of high-dimensional data under dependence but few obser-
vations. The methodology imbricates successively clustering of covariates, decorrelation
of covariates using Factor Latent Analysis, selection using aggregation of adapted meth-
ods and finally ranking. After a simulation study, we apply our method on transcriptomic
data of n = 37 patients with lung cancer, who have received chemotherapy. Our method
selects the covariates that are the most linked with the outcome treatment among a set
of 6810 transcriptomic covariates. We obtain different transcriptomic profiles of patients
according to their survival time.

Keywords. Correlated covariates selection, High dimension, Multiple testing proce-
dures, Aggregated methods, Ranking, Genetic profiles.

1 Introduction

We consider the problem to detect association between a variable of interest Y and p
correlated covariates in a high dimensional dataset X. Moreover, we are in a context of
small sample size (n � p). Many statistical methods exist to select covariates in high-
dimensional contexts: the control of false discoveries in multiple testing procedures is
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very highly studied and many methods of regression are available (lasso (see Tibshirani
et al (1996)), random forests (see Genuer et al (2010), ...).

Moreover, one way to deal with dependence is to model it by latent factors: Friguet et
al (2009) propose a way to correct the data according to a regression link with the variable
of interest Y in such a way that the corrected covariates are independent conditionally to
Y . This method of correction is called FAMT correction (for Factor Analysis for Multiple
Testing).

However, the framework of FAMT is to consider the data X as one block of correlated
covariates and has to be adapted if X is structured in several independent clusters of
correlated covariates. The FAMT does not give good results if the decomposition in
independent clusters is not taken into account. We propose to identify the clusters of
correlated covariates before performing FAMT correction on each of the clusters.

2 Methodology

2.1 Framework and model

We have n i.i.d replications of (Y,X), where X ∈ Rp = (X1, X2, . . . , Xp) is the vec-
tor of covariates. We make the assumption that, conditionally to Y , the covariates are
decomposed into K independent clusters:

X = (X
(1)
1 , . . . , X(1)

p1
, . . . X

(k)
i , . . . , X(K)

pK
) = (X(1), . . . ,X(K)),where p1 + . . .+ pK = p.

On one hand, we model the dependence in each cluster as in Friguet et al (2009):
inside each cluster X(k), the common information between the pk covariates is modeled
by regression on a small set of qk latent factors Z(k):

X
(k)
i = m

(k)
i (Y ) + b

(k)
i Z(k) + ε

(k)
i , for i = 1, . . . , pk, (1)

where Z(k) is a random centered qk-vector such that E(Z(k)Z(k)′) = Iqk , b
(k)
i is a qk-vector,

and ε(k) = (ε
(k)
1 , . . . , ε

(k)
pk ) is a random centered pk-vector with independent components,

and independent of Z(k). The covariance matrix of the data X(k) conditionally to Y , is
given by:

Σ(k) = B(k)(B(k))′ + Ψ(k) (2)

where Ψ(k) is a diagonal pk × pk matrix (the covariance matrix of ε(k)) and B(k) =(
b
(k)
i

)
i=1,...,pk

is a pk × qk matrix of factor loadings. Therefore, B(k)(B(k))′ appears as

the shared variance in the common factor structure, and Friguet et al (2009) define the
common variance by

ComVark =
trace(B(k)(B(k))′)

trace(Σ(k))
. (3)

On the other hand, we suppose that the informations specific at each cluster (that is
vectors (Z(k), ε(k))1≤k≤K) are independent.
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2.2 Main prodecure

2.2.1 Step 1: pretreatment of data

The aim is to perform a decorrelation of the covariates X, to obtain corrected covariates X?

that are suitable for testing and/or regression. The whole vector X satisfies assumption of
Equation (1), and Friguet et al (2009) apply the decorrelation procedure (FAMT) on the
whole set X. But we propose to first detect the different clusters (X(k))1≤k≤K and then to
apply the FAMT procedure on each cluster. Indeed, some simulation studies of Bastien
et al (2018) have shown that the decorrelation was degraded by the dimension of the
vector of covariates, whereas it was better after the detection of the independent clusters.
By this way, the covariates selection procedure can be highly improved by clustering of
covariates before applying factor analysis to correct the correlation within each cluster. In
practice, we use ClustOfVar algorithm of Chavent et al (2012) to cluster covariates into
homogeneous clusters. This algorithm maximizes an homogeneity criterion, where the
homogeneity of a cluster is defined by the sum of squared Pearson correlations between
the covariates present in the cluster and the first principal component of this cluster. Note
that this correction of the data X is done conditionally on the variable of interest Y . At
the end of this pretreatment procedure, we obtain corrected data, noted X∗ in the sequel.

2.2.2 Step 2: Aggregation of statistical methods applied on the resulting
dataset

We perform L methods, then each covariate X?
j obtains a score Sj ∈ {0, 1, . . . , L} that is

the number of selections among the L methods. By this way, the covariates can be ranked
according to their link with the outcome Y . If Si = L, then the corresponding variable
has been selected by each of the L methods, whereas if Si = 0, the corresponding variable
has been selected by none of them.

In the examples proposed in the simulation studiy and in real data, Y is binary and we
choose eight different methods of selection: five different multiple testing procedures ap-
plied to the Wilcoxon test (Bonferroni, Benjamin-Hochberg, q-values, local FDR, FAMT),
logistic regression penalised by Lasso, and two selections by random forests (threshold step
and interpret step, see Genuer et al (2010)). In the sequel, we call our procedure ARMADA

for AggRegated Methods for covAriates selection under Dependence.

3 Simulation study

We consider a classification problem with p = 1600 covariates and sample size n = 60,
where Y = 1 for n

2
subjects, and Y = 0 for n

2
subjects. This simulation design is inspired

from Friguet et al (2009). One design in a regression case is given in Bastien et al (2018).
The covariates X = (X(k))k=1,...,4 are clustered into four clusters of 400 covariates,

which are independent conditionally to Y . For each cluster k, we generate X̃(k) that is a
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gaussian centered 400-vector. The correlation Σ(k) of X̃(k) is designed by Equation (2),
and we take high common variances (defined in Equation (3)) ComVar(k) equal to 0.8 in
each cluster. The numbers of latent factors in each cluster are (q(1), . . . , q(4)) = (4, 6, 8, 10).

Y is linked with 160 influential covariates in X, the others being noise covariates. Y
is the most strongly linked with the 10 first covariates of each cluster, and the strength
of the link is decreasing in the successive groups of 10 influential covariates.

• For the m1 = 40 first covariates of each cluster, we had dependence with Y to X̃
(k)
j

by setting X
(k)
j = X̃

(k)
j + δj1Y=0 where: δj = 1.5 for j = 1, . . . , 10, δj = 1 for

j = 11, . . . , 20, δj = 0.75 for j = 21, . . . , 30, δj = 0.5 for j = 31, . . . , 40.

• X(k)
j = X̃

(k)
j for the 360 remaining covariates of each cluster, such that they are

independent of Y .

3.1 Interest of our data pretreatment

We compare the results of a Wilcoxon test after three different data pretreatments:

Procedure 1: nothing is done on the dataset X.

Procedure 2: the covariates X are decorrelated with the factor analysis procedure FAMT of Friguet
et al (2009), taking Y into account.

Procedure 3: the 4 clusters are estimated with ClustOfVar; then the covariates are decorrelated
in each cluster, taking Y into account, with FAMT. It is our data pretreatment.

We perform Wilcoxon tests on each of the p pretreated covariates of the dataset (to
compare groups Y = 0 and Y = 1), this gives a three sets of p p-values. For each
procedure, the selected covariates are those with p-values lower than 0.05. We apply
these procedures on N = 100 runs of (X, Y ). TP is the number of influential covariates
that are correctly detected and FP the number of non-influential detected covariates. As
shown in Figure 1, the Procedure 1 is the poorest. Our Procedure reduces the mean and
the variability of the FP. The power of our Procedure is comparable with Procedure 2.
This results show the interest of our proposed pretreatment before performing selection.

3.2 Results of the whole method (pretreatment and selection)

Figure 2 shows the mean ARMADA scores obtained on the N = 100 runs of (X, Y ). The
scores are given for all the covariates individually, and also by group of influential and
noise covariates (the groups of influential covariates are noted by ”1.5”, ”1”, ”0.75”,
”0.5”; and the group of noise covariates is noted by ”-”). The scores give a clear ranking
of the covariates, according to the strength of their link with Y . The distribution of the
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Figure 1: Number of TP (left), FP (right) according to the different pretreatment pro-
cedures. Dotted lines: expected number of FP. Boxplots are calculated on N = 100
runs.
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Figure 2: Left: mean of the ARMADA scores obtained by all the covariates. Right: boxplot
of the scores of the covariates, ranked by levels of link with Y . Means and boxplots are
calculated on N = 100 runs.

individual scores inside each group is given by the boxplots. The scores clearly separate
the influential covariates from the others; and inside the influential covariates the two first
groups are clearly separated of the last one. Around 95% of the noise covariates obtained
a ARMADA-score that was exactly 0.

We compare ARMADA with 2 other selection methods: the Wilcoxon test (the selected
covariates are those with raw-pvalues lower than 0.05), and the FAMT procedure of Friguet
et al (2009): the selected covariates are those with adjusted p-values lower than 0.05.
The ROC curves given in Figure 3 shows that our method outperforms the two others
selection methods (the ordinates of the points of the ARMADA ROC curve are all higher
than the ordinates of the points of the two other ROC curves). The ROC curves have
been obtained by the mean of the N = 100 ROC curves obtained in the N = 100 runs of
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Figure 3: ROC curves for the three selection methods.
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Figure 4: Heatmap of the covariates which have ARMADA scores greater or equal to 5. Each
column corresponds to one patient. The x-axis represents the patients (marked with their
survival time) and the y-axis represents the covariates.

(X, Y ).

4 Real data

We have p = 6810 transcriptomic covariates of n = 37 patients with lung cancer, who
have received chemotherapy. 24 (resp. 13) patients died before (resp. after) 12 months.
The question is to find the genes which can explain a survival time greater or lower than
12 months. The select genes by our Procedure are shown in Figure 4. We obtain different
transcriptomic profiles of patients according to their survival time.
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