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3 Institut de Mathématiques de Toulouse

loubes@math-univ.toulouse.fr

Résumé. Nous fournissons un théorème de limite centrale pour la distance de Monge-
Kantorovich entre deux distributions empiriques de tailles n et m, Wp(Pn, Qm), p ≥ 1,
pour les observations sur la droite réelle. Dans le cas p > 1, nos hypothèses sont précises
en termes de moments et de finesse. Nous prouvons des résultats concernant le choix des
constantes de centrage. Nous fournissons une estimateur consistant de la variance asymp-
totique qui permet de construire tests sur deux échantillons et des intervalles de confiance
pour certifier la similarité entre deux distributions. Celles-ci sont ensuite utilisées pour
évaluer un nouveau critère d’équité des ensembles de données dans la classification.

Mots-clés. Transport Optimal, Distance de Monge-Kantorovich, Théorème de Limite
Centrale, Apprentissage Juste.

Abstract. We provide a Central Limit Theorem for the Monge-Kantorovich distance
between two empirical distributions with sizes n and m, Wp(Pn, Qm), p ≥ 1, for observa-
tions on the real line. In the case p > 1 our assumptions are sharp in terms of moments
and smoothness. We prove results dealing with the choice of centering constants. We pro-
vide a consistent estimate of the asymptotic variance which enables to build two sample
tests and confidence intervals to certify the similarity between two distributions. These
are then used to assess a new criterion of data set fairness in classification.

Keywords. Optimal Transport, Monge-Kantorovich distance, Central Limit Theo-
rem, Fair Learning.

1 Context, aim and scope of the paper

Applications of optimal transportation methods have witnessed a huge development in
recent times, in a variety of fields, including machine learning and image processing, among
others. The number of significant breakthroughs in the involved numerical procedures can
help to understand some of the reasons for this interest. We refer to Chizat et al. (2018)
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for a more detailed account. In the particular field of statistical inference, despite some
early contributions (see, e.g., Munk and Czado (1998), del Barrio, Cuesta-Albertos et
al. (1999), del Barrio et al. (2005) or Freitag et al. (2007)), progress has been more slow.
Among the reasons for this different rythm we can quote the claim from Sommerfeld and
Munk (2018) that transportation cost distance ‘is an attractive tool for data analysis but
statistical inference is hindered by the lack of distributional limits’. Let us try to give a
more complete perspective on this claim.

With inferential goals in mind, the main object of interest is the transportation cost
between two sets of random points or between an empirical and a reference measure.
In the, by now classical, Kantorovich formulation, for probabilities P and Q on Rd a
transportation plan is a joint probability, say π, on Rd × Rd with marginals P and Q.
The associated transportation cost is I[π] =

∫
Rd×Rd c(x, y)dπ(x, y), where c is some cost

function, and the optimal transportation cost is the minimal value of I[π] among all
choices of transportation plans, π, between P and Q. The problem admits a much more
general formulation, but for our present purposes it is enough to know that for the choice
c(x, y) = cp(x, y) = ‖x− y‖p, p ≥ 1, if we denote by Wp

p (P,Q) the corresponding optimal
transportation cost, then Wp defines a metric in the set Fp(Rd) of probabilities on Rd

with finite p-th moment. We refer to Villani (2003) for general background on these facts.
If we observe X1, . . . , Xn i.i.d. P , Y1, . . . , Ym i.i.d. Q and write Pn and Qm for the

associated empirical measures, then, assuming that P and Q have finite p-th moment it
is well-known that Wp

p (Pn, Q) → Wp
p (P,Q) and Wp

p (Pn, Qm) → Wp
p (P,Q) almost surely.

Enhancing this result with a distributional limit theorem would yield a useful inferential
tool in different problems. Early work focused on the case P = Q. From an inferential
point of view this corresponds to goodness-of-fit problems, with a distributional limit re-
sult providing approximate distributions under the null model P = Q. In this line we
must cite Atjai et al. (1984) and Talagrand and Yukich (1993) dealing with the case when
P = Q is the uniform distribution on the unit hypercube, with later contributions (see Do-
brić and Yukich (1995), Fournier and Guillin (2015)) covering an increasingly wider setup.
These references dealt with general dimension d, but were not satisfactory for inferential
goals, since they only dealt with rates of convergence. Until very recently, distributional
limits were only available in the one-dimensional case (d = 1). In this case, if p = 1 then,
under some integrability assumptions W1(Pn, P ) = OP (n−1/2), with

√
nW1(Pn, P ) con-

verging weakly to a non Gaussian limit, see del Barrio, Giné et al. (1999). If p > 1 then
it is still possible to get a limiting distribution for

√
nWp(Pn, P ), but now integrability

assumptions are not enough and the available results require some smoothness conditions
on P (and on its density), see del Barrio, Cuesta-Albertos et al. (1999) and del Barrio
et al. (2005) for the case p = 2. Some degree of smoothness (absolute continity of P
with positive density on an interval) is, in fact, necessary for boundedness of the sequence√
nE(Wp(Pn, P )) if p > 1, see Bobkov and Ledoux (2014).

In some statistical applications (in bioequivalence testing, but also in the application
to fair learning that we present later) the goal is to provide some statistical certification
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that the data are not too far from a model, say homogeneity, P = Q. Not rejecting
the null H0 : P = Q would be a mere sanity check, but would not provide statistical
evidence that the null holds (even approximately). However, this kind of evidence would
be granted from rejection of the null H0 : ρ(P,Q) ≥ ∆0 for some distance ρ. Computation
of approximate p-values in this setup would be possible through distributional limit theory
for the case P 6= Q. Hence, in the case of transportation cost metrics it would be useful
to prove a CLT for

rn
(
Wp

p (Pn, Q)− an) (1.1)

for some centering an and scaling rn > 0 (and similarly for the two-sample case) in the
case P 6= Q. It would be also useful to guarantee that we can take an = Wp

p (P,Q) as
centering constants.

For the metric W2 (or a trimmed version of it) some limiting results for (1.1) were
given in Munk and Czado (1998) for one-dimensional data. More recently, Sommerfeld
and Munk (2018) handle d-dimensional data and general p, but it is constrained to the
case when P and Q are finitely supported (extensions to probabilities with countable
support are given in Tameling et al. (2017)). The picture is less complete in the case of
continuous distributions. Back to the case p = 2, a CLT in general dimension has been
provided in del Barrio and Loubes (2017): if Q has a positive density in the interior of its
convex support and P and Q have finite moments of order 4 + δ for some δ > 0 then

√
n
(
W2

2 (Pn, Q)− E(W2
2 (Pn, Q))

)
→w N(0, σ2(P,Q)) (1.2)

for some σ2(P,Q) which is not null if and only if P 6= Q. A two-sample version of
such results are also given in this work. Note that →w denotes weak convergence in
probabilities.

In this paper we provide extensions of (1.2) to general distances Wp, p ≥ 1. We cover
only the case of one-dimensional data. In turn, from a probabilistic point of view the
main contributions of this paper are that i) we prove the analogue of (1.2) for general
p > 1 under sharp moment and smoothness assumptions:

Theorem 1.1 (Central Limit Theorem for Wp with p > 1) Assume that F,G ∈ F2p

and G−1 is continuous on (0, 1) and p > 1. Then

(i) If X1, . . . , Xn are i.i.d. F and Fn is the empirical d.f. based on the Xi’s

√
n(Wp

p (Fn, G)− EWp
p (Fn, G))→w N(0, σ2

p(F,G)).

(ii) If, furthermore, F−1 is continuous, Y1, . . . , Ym are i.i.d. G, independent of the Xi’s,
Gm is the empirical d.f. based on the Yj’s and n

n+m
→ λ ∈ (0, 1) then√

nm
n+m

(Wp
p (Fn, Gm)− EWp

p (Fn, Gm))→w N(0, (1− λ)σ2
p(F,G) + λσ2

p(G,F )).
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ii) we show that in the case p = 1, when strict convexity of the cost function is lost,
non-normal limits can occur, even in the case P 6= Q. For the statistical applications
that we present, the centering constants in the former CLT’s are of crucial importance.
We provide general conditions under which E(Wp

p (Pn, Q)) can be replaced by Wp
p (P,Q)

as centering constant in (1.2). Combined with a consistent estimator of the asymptotic
variance in the CLT’s, this enables us to define a consistent test

H0 :Wp(P,Q) ≥ ∆0 vs Ha :Wp(P,Q) < ∆0, (1.3)

that is, a consistent method for gathering statistical evidence to ensure ifWp(P,Q) < ∆0.
We would like to note at this point that our approach to prove Theorem 1.1 uses the

fact that if P and Q are probabilities on the real line with distribution functions (d.f.’s) F
and G, respectively, then Wp

p (P,Q) is simply the Lp-distance between quantile functions

Wp
p (P,Q) =

∫ 1

0

|F−1 −G−1|p. (1.4)

(see, Remark 2.19 in Villani (2003)). For this reason, with some abuse of notation, we will
write Wp(F,G) instead of Wp(P,Q) in the sequel. We remark, however, that we do not
rely on strong approximations for the quantile process (as in Munk and Czado (1998) or
del Barrio, Cuesta-Albertos (1999)). This kind of approach would require much stronger
smoothness assumptions on F . Our technique, in contrast, is much closer to that in del
Barrio and Loubes (2017) and (1.4) is only used to prove some sharp variance bounds.

Currently, the increasingly frequent use of machine learning techniques affects many
aspects of our lives. This has yielded to a growing scientific attention to the framework of
fair learning. We refer for instance to Romei and Ruggieri (2014), Pedreschi et al. (2012),
Chouldechova (2017) or Friedler et al. (2018). In this setting, decisions are made by
algorithmic procedures and the main concern is to detect whether decision rules, learnt
from variables X, are biased with respect to a subcategory of the population. Formally,
the problem consists in forecasting a binary variable Y ∈ {0, 1} using observed covariates
X ∈ Rd, d ≥ 1, and assuming that the population is divided into two categories that
represent a bias, modeled by a protected variable S ∈ {0, 1}. A decision rule would be
unfair for S when it favours individuals in the main protected group, usually S = 1, in the
sense that the outcome of the algorithm is not just driven by the values of the covariates
X but also by the values of S, leading to treating differently individuals from both groups
while they have similar covariates. This discrimination may come from the algorithm or
from a biased situation that would have been learnt from the training sample.

In the first situation, many criteria have been given in the recent literature on fair learn-
ing to detect whether an algorithm is committing discrimination (see Berk et al. (2017) or
Besse et al. (2018) for a review). A majority of these definitions consider that the decision
should be independent from the protected attribute S. In Berk et al. (2017), a classifier
g : Rd → {0, 1} is said to achieve Statistical Parity, with respect to (X,S), if

P(g(X) = 1 | S = 0) = P(g(X) = 1 | S = 1). (1.5)
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Therefore, if L denotes the distribution of a random variable, then (1.5) is reached by a
classifier g when L(g(X) | S = 0) = L(g(X) | S = 1) and g(X) and S are independent.

Yet, in most real problems the independence described in (1.5) is difficult to achieve
and, in addition, it refers to a given rule when in fact very different classifiers could be
trained from the same learning sample. Furthermore, algorithms are usually inaccessible,
in the sense that explaining how the classifier is chosen may be seen too intrusive by most
companies or it may be simply not possible for many of them to change the way their
models are built. To beat these shortchomings, another solution originally proposed in
Feldman et al. (2015) and further developed in del Barrio et al. (2018), tries to look for a
condition on the learning sample that ensures that every classifier trained from it is fair.
This condition must guarantee that (1.5) holds for every classifier g : Rd → {0, 1}. If we
denote µs := L (X|S = s) , s ∈ {0, 1}, then this means that µ0 and µ1 are equal. But
certifying this equality is equivalent to the homogeneity testing problem and, as pointed
out before, a goodness-of-fit test does not allow such certification. The most we can as-
pire to is providing statistical evidence that µ0 and µ1 are close. In this work we argue in
favour of the Wasserstein metrics to measure the distances between the distributions.

As noted above, the CLT’s provided in this paper enable to construct a new test to
assess the degree of dissimilarity of different distributions, P and Q, using our procedure
for testing (1.3). In the setup of fair learning, rejecting the null with this test we will be
able to statistically certify that the distributions µ0 and µ1 are not too different. This will
guarantee that the data set is fair, in the sense described above. Additionally, we provide
a new way of assessing fairness in machine learning by considering confidence intervals for
the degree of dissimilarity between these distributions (with respect to the Wasserstein
distance). Finally, we also outline how our fairness assessment procedure can be tuned in
order to use it with high-dimensional data.
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