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Résumé. Dans un modéle de régression Yi = f (Xi)+σεi, i = 1, · · · , n, nous abordons
la question du test de la nullité de la fonction f . Nous proposons tout d’abord une
nouvelle procédure de test unique basée sur un noyau symétrique général et une estimation
de la variance des observations. Les valeurs critiques correspondantes sont construites
pour obtenir des tests de niveau non asymptotiques α. Nous introduisons ensuite une
procédure d’agrégation afin d’optimism le choix des parametres du noyau. Les tests
multiples vérifient les propriétés non asymptotiques et adaptatives au sens minimax de
plusieurs classes dalternatives classiques.

Mots-clés. Taux de séparation, tests adaptatifs, modle de rgression, Les méthodes
basées sur l’utilisation de noyaux, tests nationaux.

Abstract. Considering a regression model Yi = f (Xi)+σεi, i = 1, · · · , n, we address
the question of testing the nullity of the function f . The testing procedure is available
when the variance of the observations is unknown and does not depend on any prior
information on the alternative. We first propose a single testing procedure based on a
general symmetric kernel and an estimation of the variance of the observations. The
corresponding critical values are constructed to obtain non asymptotic level-α tests. We
then introduce an aggregation procedure to avoid the difficult choice of the kernel and of
the parameters of the kernel. The multiple tests satisfy non-asymptotic properties and
adaptive in the minimax sense over several classes of regular alternatives.

Keywords. Separation rates, adaptive tests, regression model, kernel methods, ag-
gregated test.

1 Introduction

We consider the regression model Yi = f (Xi)+σεi, i = 1, · · · , n, whereX = (X1, X2, · · · , Xn)
are random variables observed in a measurable space E in R and ε = (ε1, ε2, · · · , εn) are
i.i.d standard Gaussian variables, independent of (X1, X2, · · · , Xn). Let ν be a measure
on E, f is assumed to be in L2 (E, dν) and σ is unknown. In order to be able to es-
timate σ2, we assume that we also observe

(
Y
′

1 , · · · , Y
′
n

)
that obey to the above model

Y
′
i = f

(
i
n

)
+ σε

′
i, i = 1, · · · , n, with ε

′
=
(
ε
′
1, · · · , ε

′
n

)
is independence of (Y1, · · · , Yn).

Given the observation of (Xi, Yi)1≤i≤n ,
(
Y
′
i

)
1≤i≤n, we address the question of testing the

null hypothesis (H0) : f = 0, and the alternative (H1) : f 6= 0.
In our work, we propose to construct aggregated kernel based testing procedures of

(H0) versus (H1) in a regression model. Our test statistics are based on a single kernel
function which can chosen either as a projection or Gaussian kernel and we propose an
estimation for the unknown variance σ2. Our tests are exactly (and not only asymptot-
ically) of level α. We obtain the optimal non-asymptotic conditions on the alternative
which guarantee that the probability of second kind error is at most equal to precribed
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level β. However, the testing procedures that we introduce hereafter also intended to
overcome the question of calibrating the choice of kernel and/or the parameters of the
kernel. This is based on an aggregation approach, that is well-known in adaptive testing
(Baraud, Huet and Laurent (2003); Fromont, Laurent and Reynaud-Bouret (2013)). This
paper is strengly inspired by the paper of Fromont, Laurent and Reynaud-Bouret (2013).
Instead of considering a particular single kernel, we consider a collection of kernels and
the corresponding collection of tests, each with an adapted level of significance. We then
reject the null hypothesis when there exists at least one of the tests in the collection which
rejects the null hypothesises. The multiple testing procedures are constructed to be of
level α and the loss in second kind error due to the aggregation, when unavoidable, is as
small as possible. At last, we compare our tests with tests investigated in Eubank and
LaRiccia (1993) from a practical point of view.

2 Single tests based on a single kernel.

2.1 Definition of the testing procedure.

LetK be any symmetric kernel function: E×E → R satisfying:
∫
E2 K

2(x, y)f(x)f(y)dν(x)dν(y) <
+∞. We introduce the test statistic VK defined as follows,

VK =
TK
σ̂2
n

=

1
n(n−1)

∑n
i 6=j=1K(Xi, Xj)YiYj

1
n

∑n/2
i=1

(
Y
′

2i−1 − Y
′

2i

)2 . (1)

We denote for all x ∈ E, K[f ](x) =
∫
E
K(x, y)f(y)dν(y), and for all f, g ∈ L2(E, dν),

〈f, g〉 =
∫
E
f(x)g(x)dν(x) associated with ‖f‖2 = 〈f, f〉.

Thus E (TK) = 〈K[f ], f〉, whose existence is ensured by the above aussumtion of K. On

the other hand, we have σ̂2
n is a biased estimator of σ2 with bias a2 := 1

n

∑n/2
i=1

[
f
(

2i−1
n

)
− f

(
2i
n

)]2
.

If f is a regular function this bias will be small. VK is a proposed test of f = 0 since
E (TK) which can be viewed as an estimate of ‖f‖2. To see this, we consider two following
examples.
Example 1. E = [0, 1], K is a symmetric kernel function based on a finite orthonormal
family {φλ, λ ∈ Λ} with respect to the scalar product 〈., .〉, K(x, y) =

∑
λ∈Λ φλ(x)φλ(y).

We have E (TK) = 〈ΠS(f), f〉, where S is the subspace of L2([0, 1], dν) generated by
{φλ, λ ∈ Λ} and ΠS denotes the orthogonal projection onto S for 〈., .〉. Hence, when
{φλ, λ ∈ Λ} is well-chosen, TK can also be viewed as a relevant estimator of ‖f‖2.
Example 2. When E = R and ν is a density function respect to the Lebesgue mea-
sure on R, K is a Gaussian kernel, K(x, y) = 1

h
k
(
x−y
h

)
, ∀ (x, y) ∈ R2, with k(u) =

1√
2π

exp (−u2/2) ,∀ u ∈ R and h is a positive bandwidth. We have E (TK) = 〈kh ∗ f, f〉,
where ∗ is the usual convolution operator with respect to the measure ν and kh(u) =
1
h
k
(
u
h

)
, ∀u ∈ R. Hence, when the bandwidth h is well chosen, TK can also be viewed as

a relevant estimator of ‖f‖2.
Hence it is reasonable proposal to consider a test which rejects (H0) when VK is as ”large
enough”.

Now, we define critical values used in our tests within the meaning of ”large enough”.
We denote

V
(0)
K =

1
n(n−1)

∑n
i 6=j=1K(Xi, Xj)εiεj

1
n

∑n/2
i=1

(
ε
′
2i−1 − ε

′
2i

)2 , (2)
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under (H0), conditionally on X, VK and V
(0)
K have exactly the same distribution. For α ∈

(0, 1), we now choose the quantile q
(X)
K,1−α which can be approximated by a classical Monte

Carlo method, of the conditional distribution of V
(0)
K given X as critical value for our test.

We consider the test that rejects (H0) when VK > q
(X)
K,1−α, ΦK,α = 1{VK > q

(X)
K,1−α}.

2.2 Probabilities of first and second kind errors of the test.

Under (H0), we see that VK and V
(0)
K have exactly the same distribution conditionally on

X. As a result, given α ∈ (0, 1), under (H0) and by taking the expectation over X, we
obtain P(H0) (ΦK,α = 1) ≤ α.
For alternative hypothesis, given β in (0, 1), we denote by qαK,1−β/2 the (1− β/2) quantile

of the conditional quantile q
(X)
K,1−α, so Pf (ΦK,α = 0) ≤ Pf

(
VK ≤ qαK,1−β/2

)
+ β/2. The

following proposition gives a condition which ensures that Pf (ΦK,α = 0) ≤ β.

Proposition 2.1. Let α, β ∈ (0, 1). We have that Pf
(
VK ≤ qαK,1−β/2

)
≤ β/2, as soon

as 〈K [f ] , f〉 ≥
√

16AK+8BK
β

+Dn,β q
α
K,1−β/2, for

AK = n−2
n(n−1)

∫
E

(K[f ](x))2 [f 2(x) + σ2] dν(x), Dn,β = σ2 + a2 + 4σ2

n

√(
n
2

+ na2

σ2

)
ln
(

2
β

)
+

4σ2

n
ln
(

2
β

)
and BK = 1

n(n−1)

∫
E2 K

2(x, y) [f 2(x) + σ2] [f 2(y) + σ2] dν(x)dν(y). Thus under

condition of 〈K [f ] , f〉, we have Pf (ΦK,α = 0) ≤ β. Moreover, there exists some constant

κ > 0 such that, for every K and n ≥ 32 ln(2/α), qαK,1−β/2 ≤
2κ√
n(n−1)

ln
(

2
α

)√2
∫
E2 K2(x,y)dν(x)dν(y)

β
.

The following theorem gives a condition on ‖f‖2 for the test to be powerful.

Theorem 2.2. Let α, β ∈ (0, 1), κ be a positive constant, K be a symmetric kernel
function, CK be an upper bound for

∫
E2 K

2(x, y)dν(x)dν(y). Then ∀n ≥ 32 ln(2/α),

we have Pf (ΦK,α = 0) ≤ β, as soon as ‖f‖2 ≥ ‖f − K[f ]‖2 +
64(n−2)(‖f‖2∞+σ2)

n(n−1)β
+

4√
n(n−1)β

(
κDn,β ln

(
2
α

)
+ 4

(
‖f‖2

∞ + σ2
))√

CK , where for any real valued function f , ‖f‖∞ =

supx∈E |f(x)|.

2.3 Performance of the Monte Carlo approximation.

In this section, we introduce a Monte Carlo method used to approximate the conditional
quantiles q

(X)
K,1−α by q̂

(X)
K,1−α. Conditionally onX, we consider {εb, 1 ≤ b ≤ B} and {ε′b, 1 ≤

b ≤ B}, with εb = {εbi}ni=1, ε
′b = {ε′bi }ni=1 are sequences of i.i.d standard Gaussian random

variables and {εb, 1 ≤ b ≤ B}, {ε′b, 1 ≤ b ≤ B} are assumed to be independent. Under
conditionally on X, for 1 ≤ b ≤ B, we define

V

(
εb,ε
′b
)

K =

1
n(n−1)

∑n
i 6=j=1K(Xi, Xj)ε

b
iε
b
j

1
n

∑n/2
i=1

(
ε
′b
2i−1 − ε

′b
2i

)2 .

Under (H0), conditionally on X, the variables V

(
εb,ε
′b
)

K have the same distribution func-

tion as VK and V
(0)
K . Denoting FK,B = 1

B

∑B
b=1 1

{
V

(
εb,ε
′b
)

K ≤ x

}
, ∀x ∈ R. Then
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q̂
(X)
K,1−α = F−1

K,B(α) = inf {t ∈ R, FK,B(t) ≥ 1− α} and we now consider the test Φ̂K,α =

1

{
VK > q̂

(X)
K,1−α

}
. Approaching this proposed test, the probabilities of first and second

kind errors of the test built with these Monte Carlo approximation are guaranteed from
results in paper of Fromont, Laurent and Reynaud-Bouret (2013).

3 Multiple tests based on collections of kernel func-

tions.

Following this section, we consider some collections of kernel functions instead of a single
one to avoid choosing the kernel, and/or its parameters when considering the testing proce-
dures based on a single kernel function K.. Introducing a finite collection {Km, m ∈M}
of symmetric kernel functions: E × E → R. For m ∈ M,we define VKm and V

(0)
Km

cor-
responding to Km replaced in (1) and (2) and {wm, m ∈M} be a collection of positive
numbers such that

∑
m∈M e−wm ≤ 1. Conditionally on X, for u ∈ (0, 1), we denote

by q
(X)
m,1−u the (1 − u) quantile of V

(0)
Km

. Given α in (0, 1), we consider the test which

rejects (H0) when there exists at least one m in M such that VKm > q
(X)

m,1−u(X)
α e−wm

,

where u
(X)
α = sup

{
u > 0, P

(
supm∈M

(
VKm − q

(X)

m,1−ue−wm

)
> 0

∣∣∣∣X) ≤ α

}
. We consider

the corresponding test function Φα = 1

{
supm∈M

(
VKm − q

(X)

m,1−u(X)
α e−wm

)
> 0
}

.

Using the Monter Carlo method, we can estimate u
(X)
α and the quantile q

(X)

m,1−u(X)
α

by given

X. The level α ∈ (0, 1) and the probability of second kind error at most equal to β ∈ (0, 1)

can be guaranteed for one of the single tests rejecting (H0) when VKm > q
(X)

m,1−u(X)
α e−wm

.

3.1 Presentation of the simulation study.

We particularly study our multiple testing procedures in this section with E = [0, 1], n =
100 and α = 0.05, X is a uniform variable on [0, 1]. First, we consider the Haar basis
{φ0, φ(j,k), j ∈ N, k ∈ {0, · · · , 2j − 1}, φ0(x) = 1[0, 1](x) and φ(j,k)(x) = 2j/2ψ(2jx − k),
with ψ(x) = 1 [0, 1/2) (x) − 1 [1/2, 1] (x). Let K0(x, x

′
) = φ0(x)φ0(x

′
) and for J ≥ 1

KJ(x, x
′
) =

∑
λ∈{0}∪ΛJ

φλ(x)φλ(x
′
) with ΛJ = {(j, k), j ∈ {0, · · · , J−1}, k ∈ {0, · · · , 2j−

1}}. Let MJ = {J, 0 ≤ J ≤ 7} and for every J in MJ , wJ = 2
(
ln(J + 1) + ln(π/

√
6)
)
.

We consider Φ
(1)
α the multiple testing procedure with the collection of projection kernels

{KJ , J ∈MJ}. Second, for L = {1, 2, · · · , 6} we take {hl, l ∈ L} = {1/24, 1/16, 1/12, 1/8, 1/4, 1/2},
let Kl(x, y) = 1

hl
k
(
x−y
hl

)
with k(u) = (2π)−1/2 exp (−u2/2). Then taking wl = 1/|L| =

1/6, we consider Φ
(2)
α the multiple testing procedure denoted by G, with the collection

of Gaussian kernels {Kl, l ∈ L}. At last, we are interested in the collection of both

projection and Gaussian kernels. We define Φ
(3)
α denoted by PG, the multiple testing

procedure with the collection of kernels {Kp, p ∈ P =MJ ∪ L}. For p ∈ MJ we take
wp = ln(J + 1) + ln(π/

√
6) and for p ∈ L we take wp = 1/12.

For each observation X = (X1, · · · , Xn) we have to estimate u
(X)
α and q

(X)

m,1−u(X)
α e−wm

by the

Monte Carlo method. Precisely, we generate 400000 samples of
{
εb
}400000

b=1
and

{
ε
′b
}400000

b′=1
,

in which we use one half to approximate the conditional probability and other half is used
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1st error CI
P 0.0504 [0.033, 0.068]
G 0.0506 [0.032, 0.068]
PG 0.0498 [0.032, 0.0657]

Table 1: The probabilities of first kind error of test and their confidence interval (CI)
with confidence level 99%.

to estimate the distribution of each V
(0)
Km

. u
(X)
α is approximated by taking u in a regular

grid of [0, 1] with bandwidth 2−16 and choosing the approximation of u
(X)
α as the largest

value of the grid such that the estimated conditional probabilities are less than α.
We realize 5000 simulations of X. For each simulation, we determine the conclusions of
the tests P, G and PG where the critical values are approximated by the Monte Carlo
method. The probabilities of first kind error of the tests are estimated by the rejections
for these tests divided by 5000 in the Table 1.
We then study the probabilities of rejection for each test for several alternatives in-
cluding f1,a,ε(x) = ε1[0,a)(x) − ε1[a,2a)(x), with 0 < ε ≤ 1 and 0 < a < 1; f2,τ (x) =

τ
∑

j
hj
2

(1 + sgn (x− pj)) , with τ > 0, and hj ∈ Z, 0 < pj < 1 ∀j; f3,c(x) = c cos(10πx),
with c > 0 and the last f4,%,j(x) = % cos(2πjx), with % ≥ 0 and j ∈ N \ 0 which we aim to
compare our results with the results of Eubank and LaRiccia (1993) as

(a, ε)
(1/4, 0.7) (1/4, 0.9) (1/4, 1) (1/8, 1)

p̂ CI p̂ CI p̂ CI p̂ CI
P 0.876 [0.849, 0.903] 0.986 [0.976, 0.996] 0.996 [0.990, 1.001] 0.699 [0.662, 0.736]
G 0.831 [0.801, 0.861] 0.977 [0.965, 0.989] 0.992 [0.985, 0.999] 0.635 [0.596, 0.674]
PG 0.884 [0.858, 0.910] 0.984 [0.973, 0.994] 0.996 [0.991, 1.001] 0.690 [0.652, 0.727]

Table 2: The power of the test for the alternative f1,a,ε corresponding to (a, ε) =
(1/4, 0.7) , (1/4, 0.9) , (1/4, 1) , (1/8, 1) and theirs CIs with confidence level 99%.

τ
0.05 0.1 0.5

p̂ CI p̂ CI p̂ CI
P 0.218 [0.177, 0.243] 0.654 [0.615, 0.693] 1 *
G 0.208 [0.175, 0.241] 0.668 [0.629, 0.704] 1 *
PG 0.210 [0.177, 0.243] 0.678 [0.639, 0.716] 1 *

Table 3: The power of the test for the alternative f2,τ corresponding to τ = 1, 2, 3 and
their CIs with confidence level 99%.

For each alternative f , we realize 1000 simulations of X. For each simulation, we
determine conclusions of the tests P, G and PG, where the critical values of our tests are
still approximated by the Monte Carlo method. The powers of the tests are estimated by
the number of rejections divided by 1000, in the Table 2, 3, 4 and 5.

In the all cases, the three tests P, G and PG are powerful. In the three alternatives
f1,a,ε, f2,τ and f3,c, the test PG is more powerful than P and G tests. Our conclusion is
that the test PG is a good choice for practice. Comparing our estimated powers with the
two tests denoted by EL1 corresponding to Tnm and EL2 corresponding to Tnλ in Eubank
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c
1 2 3

p̂ ICI p̂ CI p̂ CI
P 0.35 [0.311, 0.389] 0.90 [0.876, 0.924] 0.98 [0.969, 0.991]
G 0.56 [0.519, 0.600] 0.98 [0.967, 0.991] 1 *
PG 0.34 [0.301, 0.379] 0.89 [0.864, 0.915] 1 *

Table 4: The power of the test for the alternative f3,c corresponding to c = 1, 2, 3 and
their CIs with confidence level 99%.

% = 0 % = 0.5 % = 1 % = 1.5
p̂ CI p̂ CI p̂ CI p̂ CI

P 0.049 [0.031, 0.066] 0.606 [0.566, 0.645] 1 1
j = 1 G 0.048 [0.031, 0.065] 0.459 [0.418, 0.499] 0.99 [0.982, 0.998] 1 *

PG 0.048 [0.031, 0.065] 0.441 [0.401, 0.481] 0.99 [0.982, 0.998] 1 *
EL1 0.074 [0.053, 0.095] 0.837 [0.807, 0.867] 1 * 1 *
EL2 0.062 [0.042, 0.082] 0.805 [0.773, 0.837] 1 * 1 *

P 0.053 [0.035, 0.071] 0.224 [0.190, 0.258] 0.905 [0.881, 0.928] 1 *
j = 3 G 0.053 [0.035, 0.071] 0.224 [0.190, 0.258] 0.922 [0.900, 0.944] 1 *

PG 0.049 [0.031, 0.066] 0.630 [0.591, 0.669] 1 * 1 *
EL1 0.069 [0.048, 0.089] 0.718 [0.681, 0.755] 1 * 1 *
EL2 0.058 [0.039, 0.077] 0.693 [0.655, 0.731] 1 * 1 *

P 0.043 [0.026, 0.060] 0.134 [0.106, 0.162] 0.696 [0.658, 0.733] 0.990 [0.982, 0.998]
j = 6 G 0.044 [0.027, 0.061] 0.146 [0.117, 0.174] 0.741 [0.705, 0.777] 0.995 [0.989, 1]

PG 0.045 [0.028, 0.062] 0.134 [0.106, 0.162] 0.700 [0.663, 0.737] 0.996 [0.990, 1]
EL1 0.076 [0.054, 0.098] 0.134 [0.106, 0.162] 0.428 [0.388, 0.468] 0.979 [0.967, 0.991]
EL2 0.056 [0.037, 0.075] 0.107 [0.082, 0.132] 0.368 [0.328, 0.407] 0.961 [0.945, 0.977]

Table 5: The power of the test for the alternative f4,%,j corresponding to % =
0, 0.5, 1, 1.5, j = 1, 2, 3 and their CIs with confidence level 99%.

and LaRiccia (1993) showed in the Table 5. We realize that our results are quite stable.
Precisely, our results look not as good as the results in this paper in the case of j = 1
and j = 3, however, in the case of j = 6, the proportion of rejections in 1000 samples for
various choices of % in our results are more powerful than old results of this paper.
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