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Résumé. RKHSMetaMod est un package R qui estime un méta-modèle d’une fonction
inconnue m dans le cadre d’un modèle de régression Gaussien. La procédure repose sur
la minimisation d’un critère des moindres carrés pénalisé par une double pénalité dite
Ridge Group Sparse, pour des fonctions appartenant à un espace de Hilbert a Noyau
Reproduisant (RKHS). Le méta-modèle estimé est un modéle additif dont les termes
estiment les termes de la décomposition de Hoeffding de la fonction m. Ce package
fournit une interface conviviale entre l’environnement informatique statistique R et les
bibliothèques C++ Eigen et GSL. Le temps d’exécution est optimisé via l’utilisation des
packages RcppEigen et RcppGSL.

Mots-clés. méta-modèle, décomposition de Hoeffding, pénalité Ridge Group Sparse,
espaces de Hilbert a Noyau Reproduisant.

Abstract. RKHSMetaMod is an R package that fits a meta model to an unknown
model m by solving the Ridge Group Sparse Optimization Problem based on Reproducing
Kernel Hilbert Spaces (RKHS). The obtained meta model is an additive model that
satisfies the properties of the Hoeffding decomposition, and its terms estimate the terms
in the Hoeffding decomposition of the function m. This package provides an interface
from R statistical computing environment to the C++ libraries Eigen and GSL. It uses
the performance C++ functions through RcppEigen and RcppGSL packages to speed up
the execution time and the R environment in order to propose an user friendly package.

Keywords. meta model, Hoeffding decomposition, Ridge Group Sparse penalty, Re-
producing Kernel Hilbert Spaces.

1 Introduction

Consider the Gaussian regression model Y = m(X) +σε, σ ∈ R. The variables X1, ..., Xd

are independently distributed with law PX on X and are independent of ε’s, the function
m is unknown and square integrable, i.e. m ∈ L2(PX ,X ).
Since the inputs X are independent the function m(X) can be written according to
its Hoeffding decomposition, see Sobolá (2001). Let P be the set of parts of {1, ..., d}
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with dimension 1 to d, and Xv the set of variables for all v ∈ P , then the Hoeffding
decomposition of m is written as :

m(X) = m0 +
∑
v∈P

mv(Xv), (1)

where m0 is a constant, and mv is a function of Xv. In this decomposition all the terms
are orthogonal with respect to L2(PX ,X ).
Thanks to the independency between the variables Xa for a = 1, ..., d, the variance of
m(X) can be decomposed as follows :

Var(m(X)) =
∑
v

Var(mv).

The sensitivity indices, introduced by Sobolá (2001), are defined for any group of variables
Xv, v ∈ P by :

Sv =
Var(mv(Xv))

Var(m(X))
.

Since the function m is unknown, the functions mv are also unknown. The idea is to
approximate the Hoeffding decomposition of m by an additive model, called RKHS meta
model. This meta model belongs to the RKHS H =

⊗
Hv, constructed as proposed by

Durrande et al. (2013).
Thanks to the properties of this space any function f ∈ H, satisfies :

f(X) =< f, k(X, .) >H= f0 +
∑
v

fv(X),

where < ., . >H denotes the scalar product in H, k is the reproducing kernel associated
with the RKHS H, and fv(X) =< f, kv(X, .) >H for kv being the reproducing kernel
associated with the RKHS Hv.
Moreover, for all v ∈ P , fv(Xv) are centered and for all v 6= v′ the functions fv(Xv) and
fv′(Xv′) are uncorrelated. So, we get the Hoeffding decomposition of f .
The function m is approximated by the RKHS meta model f ∗ ∈ H, which is the solution
of the residual sum of squares minimization, penalized by a Ridge Group Sparse penalty
function. This method both estimates the groups v that are suitable for predicting m and
the relationship between mv and Xv. The terms of the Hoeffding decomposition of the
estimator f ∗ are the approximations of each mv(Xv) in Equation (1).
RKHSMetaMod is an R package, that implements the RKHS Ridge Group Sparse opti-
mization algorithm to approximate the terms mv in the decomposition given at Equation
(1). As a consequence we get an estimation of the function m.
To be more precise, it provides the functions RKHSgrplasso() and RKHSMetMod() to fit
a solution of the two following convex optimization problems :
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• RKHS Group Lasso,

• RKHS Ridge Group Sparse,

where RKHS Group Lasso is a special case of RKHS Ridge Group Sparse algorithm.
These algorithms are described in the next section. In section 3 we give an overview of
the main function of the package and we illustrate the use of this function through an
example.

2 Description of the method

2.1 RKHS Ridge Group Sparse Optimization Problem

Let n be the number of observations. The dataset consists of Y , vector of n observations,
and X, an n×d matrix of features, with components (Xai, i = 1, ..., n, a = 1, ..., d) ∈ Rn×d.
For some tuning parameters γv and µv, we consider the RKHS Ridge Group Sparse criteria,

1

n
‖Y − f0 −

∑
v∈P

fv(Xv)‖2 +
1√
n
γ
∑
v∈P

‖fv‖+ µ
∑
v∈P

‖fv‖Hv , (2)

where ‖.‖ is the Euclidean norm in Rn, and matrix Xv represents the predictors corre-
sponding to the v-th group. The minimization of Equation (2) is carried out over a proper
subset of H.
According to the Representer Theorem, see Kimeldorf and Wahba (1970), for all v ∈ P ,
we have fv(.) =

∑n
i=1 θvikv(Xvi,.) for some matrix θ = (θvi, i = 1, ..., n, v ∈ P) ∈ Rn×|P|.

Therefore, the minimization of Equation (2) over a set of functions of H comes to the
minimization of Equation (3) over f0 ∈ R, and θv ∈ Rn :

C(f0, θv) = ‖Y − f0In −
∑
v∈P

Kvθv‖2 +
√
nγ

∑
v∈P

‖Kvθv‖+ nµ
∑
v∈P

‖K1/2
v θv‖, (3)

where Kv is the n × n Gram matrix associated with the kernel kv(Xv, .), see Huet and
Taupin (2017).

2.2 RKHS Group Lasso Optimization Problem

The minimization of Equation (3) could be seen as a Group Lasso optimization problem
by considering only the second penalty function, i.e. setting γ = 0.
The RKHS Group Lasso criteria is defned as :

Cg(f0, θv) = ‖Y − f0In −
∑
v∈P

Kvθv‖2 + nµ
∑
v∈P

‖K1/2
v θv‖. (4)

For more details about the ordinary Group Lasso algorithm, see Meier et al. (2008).
From now on we denote the penalty parameter in the RKHS Group Lasso algorithm by
µg =

√
nµ.
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2.3 Choice of the tuning parameters

We propose to use a sequence of tuning parameters to create a series of estimators. These
estimators are evaluated using a testing dataset (Y test

i , Xtest
i ), i = 1, ..., ntest. For each

value of (µ, γ) in the sequence, let f̂(µ,γ) be the estimation of m, obtained by the learning
dataset. Then, the prediction error is calculated by,

ErrPred(µ, γ) =
1

ntest

ntest∑
i=1

(Y test
i − f̂(µ,γ)(Xtest

i ))2,

where f̂(µ,γ)(X
test) = f̂0 +

∑
v

∑n
i=1 kv(Xvi, X

test
v )θvi.

We choose the pair (µ̂, γ̂) with the smallest prediction error, and the model associated
with these chosen tuning parameters is the ”best” estimator, f̂ = f̂(µ̂,γ̂) of the true model
m.
To set up the grid of values of µ, one can set γ = 0, and find µmax, the smallest value
of µg such that the solution to the minimization of the RKHS Group Lasso problem is
θv = 0, ∀v ∈ P . Then µl = µmax√

n
× 2−l, l ∈ {1, ..., lmax} could be a grid of values for µ.

2.4 Sensitivity indices

Once we obtain the estimator f̂ , we calculate it’s sensitivity indices by,

Ŝv =
Var(f̂v(Xv))

Var(f̂(X))
.

Since f̂ ∈ H, we have Var(f̂(X)) =
∑

v Var(f̂v(Xv)). We use an estimator based on the

empirical variances of functions f̂v (Huet and Taupin (2017)) :

V̂ar(f̂v) =
1

n− 1

∑
i

(f̂v(Xv,i)− f̂v,.)2,

where f̂v,. is the mean of f̂v(Xv,i) for i = 1, ..., n. The Ŝv are the approximations of the
sensitivity indices Sv, for all v ∈ P , of the function m.

3 Main function of the RKHSMetaMod

RKHSMetMod() function Calculates a sequence of meta models which are the
solutions of the RKHS Ridge Group Sparse or RKHS Group Lasso optimization prob-
lems. In Table 1 the reader will find a summary of all the input parameters of the
RKHSMetMod() function and default values for non mandatory parameters.

The RKHSMetMod() function returns an instance of the ”RKHSMetMod” class. Its
three attributes will contain all outputs :
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Input parameter Description
Y Vector of response observations of size n.
X Matrix of input observations with n rows and d columns. Rows

correspond to observations and columns correspond to variables.
kernel Character, indicates the type of reproducing kernel choosed to con-

struct the RKHS H.
Dmax Integer, between 1 and d, indicates the order of interactions con-

sidered in the meta model, i.e. Dmax= 1 is used to consider only
the main effects, Dmax= 2 to include the main effects and the
interactions of order 2,....

gamma Vector of non negative scalars, values of the penalty parameter γ
in decreasing order. If γ = 0 the function solves the RKHS Group
Lasso problem and for γ > 0 it solves the RKHS Ridge Group
Sparse problem.

frc Vector of positive scalars. Each element of the vector sets a value to
the penalty parameter µ, µ = µmax√

n×frc . The value µmax is calculated
inside the program.

verbose Logical, set as FALSE by default.

Table 1: List of the input parameters of RKHSMetMod() function

• mu : Value of the penalty parameter µ or µg, depending on the value of the penalty
parameter γ.

• gamma : Value of the penalty parameter γ.

• Meta-Model : A RKHS Ridge Group Sparse or RKHS Group Lasso object associated
with the penalty parameters mu and gamma.

Ilustration of use of this function is given in the following Example.

Example Simulate the experiment proposed by Durrande et al. (2013) :
Recall our model, Y = m(X) + σε. We set σ = 0.2, ε ∼ N (0, 1), and we consider the
g-function of Sobol, see Saltelli et al. (2009), defined over [0, 1]d by,

m(X) =
d∏
a=1

|4xa − 2|+ ca
1 + ca

, ca > 0.

Set n = 100, d = 5, Dmax = 3 and (c1, c2, c3, c4, c5) = (0.2, 0.6, 0.8, 100, 100). The predic-
tion error for a series of RKHS meta models obtained by the function RKHSMetMod() is
displayed in Table 2.

The minimum value of prediction error is obtained for (µ̂, γ̂) = (0.002, 0.01), and the
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µ 0.0434 0.0217 0.0108 0.0054 0.0027 0.0013 0.0006
γ1 =0.2 0.2744 0.1928 0.1608 0.1459 0.1374 0.1383 0.1612
γ2 =0.1 0.2187 0.1553 0.1329 0.1193 0.0978 0.0913 0.1057
γ3 =0.01 0.1789 0.1322 0.1188 0.1008 0.08301 0.0831 0.0867
γ4 =0.005 0.1771 0.1312 0.1183 0.1013 0.08556 0.0892 0.0946
γ5 =0 0.1751 0.1302 0.1181 0.1021 0.0880 0.0954 0.1065

Table 2: Prediction error.

”best” RKHS meta model is then f̂(0.002,0.01).
The obtained SIs are presented in the Table 3. In the first row the reader finds the true
SIs, in the second row the results obtained by Durrande et al. (2011), in the third row
the empirical SIs for f̂(0.002,0.01), and the last row is the mean of the empirical SIs of the
”best” RKHS meta models for 10 generated experimental designs.

v {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} sum
SI 0.43 0.24 0.19 0.06 0.04 0.03 0.01 1
SId 0.44 0.24 0.19 0.01 0.01 0.01 0.00 0.9
SI.minErr 0.44 0.27 0.25 0.02 0.01 0.01 0.00 1
mean.SI.minErr 0.46 0.25 0.18 0.04 0.03 0.01 0.00 0.97

Table 3: Sensitivity Indices.
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