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Résumé. Les graphes jouent un rôle central dans la modélisation des systèmes com-
plexes. Leur analyse est une problématique importante qui couvre une grande variété
de domaines et d’applications. Dans ce contexte, nous proposons une variante d’une des
méthodes les plus connues d’analyse de graphe, le spectral clustering. Cette nouvelle
méthode, appelée l1-spectral clustering, ne requiert pas l’utilisation du k-means pour re-
grouper les nœuds du graphe, mais estime directement les indicateurs des communautés
en déterminant une base propre spécifique à partir d’une pénalité l1.

Mots-clés. Spectral clustering, détection de communautés, base de vecteurs propres,
pénalité l1.

Abstract. Graphs play a central role in complex systems. Analyzing a graph is
a major issue that covers a wide range of fields and applications. In this context, we
propose a variant of one of the most well-known graph clustering method, the spectral
clustering. This procedure, called l1-spectral clustering, does not require the use of k-
means to cluster the nodes of the graph, but directly estimates the indicators of the
communities by computing a specific eigenbasis using l1 penalty.

Keywords. Spectral clustering, community detection, eigenvectors basis, l1-penalty.

Introduction

Graphs play a central role in complex systems as they are involved in the extraction of
useful information from the related problem. They cover a wide field of applications, rang-
ing from mathematics to physics, sociology, marketing, informatics or biology. Graphs
are a convenient way to model and study interactions between individuals represented by
nodes. One of the challenges when analyzing graphs is the estimation of these interactions
when the structure is not known or not fixed. Another challenging task is the understand-
ing of the graph structure by clustering highly connected subsets of nodes. For instance,
in genetics, groups of genes with high interactions are likely to be involved in a same
function that drives a specific biological process. More generally, such community struc-
tures (groups of nodes that are densely connected with sparse connections in between)
are believed to play an important role in the functioning of complex systems modelled
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by graphs, so that detecting theses structures is of the highest importance ( Girvan and
Newman(2002), Newman and Girvan(2004)) .

Among different graph community detection methods, spectral clustering is currently
one of the most popular (Von Luxburg (2007)). This method uses the eigenvectors of ad-
jacency type matrices to cluster the nodes of a graph into a given number of communities.
The nodes are not directly clustered but k-means is applied to the eigenvectors to detect
the communities. If this method is so popular it is mainly because spectral clustering is
very easy to implement and easy to use: computations are thus very fast and efficient,
even for very large graphs. However, there is no guarantee to reach the best or most
natural partitioning for general models.

In reply to this issue, we developed a first regularization technique, which is cast into a
specific graph clustering strategy ( Champion and Brunet and Loubes and Risser(2018)).
this edge aims at detecting highly connected subnetworks containing representative vari-
ables selected as the centers of specific variables clusters, called Core-clusters. Core-
clusters have two properties: they contain more than a predefined amount of variables
and each of their possible variable pairs have a coherent observed behavior. In addition,
the representative variables selected as the centers of Core-clusters are clearly more in-
terpretable and pertinent than those estimated using spectral clustering method with an
intuitive parameter tuning.

Then, we developed an alternative method to Spectral clustering, called l1-spectral
clustering. This procedure does not require the use of k-means to cluster the nodes of the
graph, but directly estimates the indicators of the communities by computing a specific
eigenbasis, better suited for clustering, using l1 penalty in a specific random graph model.

1 Notation and model

1.1 Graph notations

We consider a graph G(V,E) with n fixed nodes which refers to a set of vertices (nodes)
and a set of edges (links). The nodes, labeled from 1 to n, represent the individuals
or objects and the edges the interactions and relationships between them so that V =
{1, . . . , n}. From a mathematical point of view, a graph G is a pair (V,E) where V is
the set of vertices and E refers to the set of edges that pairwise connect the vertices. An
edge e ∈ E that connects a node i and a node j is denoted by e = (i, j). In our setting,
we consider only unweighted and undirected graphs with fixed vertices and no loops. An
important object associated to the graph is the adjacency matrix A = (Aij)(i,j)∈V 2 defined
by

Ai,j =

{
1 if there is an edge between i and j,
0 otherwise.

Since the graph is undirected, A ∈ Mn(R) is a symmetric matrix that is Aij = Aji.
Moreover, Aii = 0 because there are no loops.
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The degree di of a node i is equal to the number of edges incident to i (whose root is
node i), so that

di =
n∑

j=1

Aij.

The matrix D, called the degree matrix, contains (d1, . . . , dn) on the diagonal and zero
anywhere else

D =

d1 0
. . .

0 dn

 .

Given a subset of vertices C ∈ V , we define the indicator 1C ∈ Rn as the vector whose
entries are defined by

(1C)i =

{
1 if vertex i belong to C,
0 otherwise.

where a subset C ∈ V of a graph is said to be connected if any two vertices in C are
connected by a path in C (sequence of vertices in C connected by edges that joined
the two initial vertices). In addition, C is called a connected component if there are no
connections between vertices in C and C. Non empty sets C1, . . . , Ck form a partition of
the graph if Ci ∩ Cj = ∅ and C1 ∪ · · · ∪ Ck = V .

1.2 Presentation of the model

The ideal graph G is assumed to be the union of k complete graphs that are disconnected
from each other. We allow the number of vertices in each subgraph to be different. We

denote by s1, . . . , sk (≥ 2) their respective size (
k∑

i=1

si = n). To simplify, we assume that

the nodes {1, . . . , n} are ordered with respect to their block membership and in increasing
order with respect to the size of the blocks.

A =




0 1 · · · 1
1 0 · · · 1
...

...
...

...
1 1 · · · 0


︸ ︷︷ ︸

s1

0

. . .

0


0 1 · · · 1
1 0 · · · 1
...

...
...

...
1 1 · · · 0


︸ ︷︷ ︸

sk
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The reality is that we do not have access to the graph G with such an adjacency
matrix but we observe a perturbed version of G denoted by Ĝ. We actually assume
that the perturbed graph results form a deterministic graph with an exact community
structure, whose edges have been dusturbed by Bernoulli variables.

The associated adjacency matrix Â satisfies

Â = A
2⊕
B

where

• Âij = {A
2⊕
B}ij = A + B (mod2).

• B is a symmetric matrix of size n, whose upper entries are realizations of independent
Bernoulli variables i.e. Bij ∼ B(p) i.i.d, i < j with Bii = 0 and Bij = Bji.

B is therefore the adjacency matrix of an Erdos-Renyi graph G(n, p).
In this framework, we suggest the use of spectral clustering algorithm to find the

underlying communities of G from the observation of the noisy graph Ĝ.

2 `1-spectral clustering, a new graph community de-

tection method

2.1 Model of the traditional spectral clustering

The original spectral clustering has been proposed by Von Luxburg (2007) to cluster the
nodes of the graph into communities using the first k eigenvectors (corresponding the
k smallest eigenvalues) of a normalized or unormalized version of the Laplacian matrix
(derived from the adjacency one). Let G = (V,E) be a graph made of k connected
components C1, . . . , Ck. Let A be the associated adjacency matrix and D its degree
matrix. Let L = D − A, Lsym = D−

1
2AD−

1
2 and Lrw = I − D−1A be respectively the

Laplacian, Symmetric Laplacian and random walk Laplacian matrix. Then, the following
spectral proposition holds:

Proposition 1 (Number of connected components and spectra of Lsym and Lrw) :
Let G be an undirected graph. Then the multiplicity k of the eigenvalue 0 of both L

and Lsym equals the number of connected components C1, . . . , Ck in the graph. For Lrw

, the eigenspace of 0 is spanned by the indicator vectors {1Ci
}1≤i≤n of those components.

For Lsym, the eigenspace of 0 is spanned by the vectors {D1/21Ci
}1≤i≤n .

We deduce from Proposition 1 (Von Luxburg (2007)) that the multiplicity of the
null eigenvalue (that corresponds to the smallest eigenvalue) is equal to the number of
connected components. Thus, a particular basis of the associated eigenspace is spanned
by the community indicators. In addition, the rows of the matrix resulting from the
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concatenation of the k first eigenvectors, corresponding to indices of nodes, in the same
class are equal. Therefore, it is natural to apply k-means to these rows to provide, by the
same way, the knowledge of the blocks which make them very attractive.

However, the graph is not made of connected components, but of densely connected
subgraphs that are sparsely connected to each other. These densely connected subgraphs
represent somehow a perturbed version of the initial connected components that form the
communities. If the perturbation is not too high, we can still hope that the eigenvectors of
the perturbed Laplacian matrix (associated to this perturbed graph) still contain enough
information on the graph structure to detect these communities. Therefore, there is no
theoretical guarantee that we recover the true communities.

In the next section, we present the heart of our contribution to spectral clustering
methods.

2.2 `1-spectral clustering

The way the eigenvectors basis of the matrix is built is of the highest importance to
ensure a good recovery of the communities. The key is to select relevant eigenvectors that
provide useful information about the natural grouping of the data.

Unlike the spectral clustering method, the alternative one aims at finding reliably the
k underlying communities of a graph G from the observation of the noisy graph Ĝ. We
still focus on the space spanned by the k first eigenvectors but directly computed from the
adjacency matrix. The idea remains the same, the only difference is that the eigenvalues
associated to the eigenvectors {1Ci

}1≤i≤k have a different value: d1, . . . , dk. The other
eigenvalues are equal to −1. The community indicators are the eigenvectors associated
this time to the largest eigenvalues. We assume that the eigenvalues of A denoted are
sorted in decreasing order.

Let u1, . . . , un be the associated normalized eigenvectors given by any eigensolvers, so
that the k first eigenvectors of A (associated to the k largest eigenvalues) are denoted by
u1, . . . , uk. We denote by Uk the matrix that contains u1, . . . , uk in columns and by Vk the
one that contains uk+1, . . . , un. We define Uk = Span{u1, . . . , uk}. The first community
indicator is solution of some specific minimization problem:

Proposition 2 The minimization problem

arg min
v∈Uk\{0}

‖v‖0

has a unique solution (up to a constant) given by 1C1.

In other words, 1C1 is the sparsest non-zero eigenvector in the space spanned by the first
k eigenvectors.

Notice that the constraints are linear. However, because of the l0-norm this mini-
mization problem is NP-hard. But assuming the knowledge of one representative for each
group, we can replace the l0-norm by its convex relaxation given by the l1-norm. Thus,
in addition to the number of communities, we assume that we know one representative
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of each community. By a representative, we mean a node belonging to this community.
This assumption is not so restrictive compared to traditional spectral clustering where
the number of communities is assumed to be known.

Let i1, . . . , ik be the indices of these representative elements and let Ũk = {v ∈ Uk :
vi1 = 1}.

This is straightfoward to see that the community indicator of the smallest community
is solution of the following optimization problem.

Proposition 3 The minimization problem (P1)

arg min
v∈Ũk

‖v‖1

has a unique solution given by 1C1.

To simplify and without loss of generality, we assume that i1 corresponds to the first
index (up to a permutation).

Proposition 4 Problem (P1) is equivalent to

arg min
ṽ∈S

‖ṽ‖1

where S is a subset of Rn−1 based on some transformations of the initial eigenvectors of
the adjacency matrix. These eigenvectors depend on the perturbation of the adjacency
matrix and more specifically on the Frobenius norm of the noise matrix ( Stewart and
Sun and Jovanovich (1990)).

These propositions are then generalized to find the other indicators of the communities.
Hence, from the adjacency matrix, the `1-spectral clustering does not directly use the
subspace spanned by the first eigenvectors to find the communities but computes another
eigenbasis that promotes sparse solutions for the eigenvectors. The indicators of the
communities are characterized as the ones that have the minimal `1-norm with respect to
a specific restricted space.
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