
Joint-Lasso applied to sparse group Partial Least
Square and application to pleiotropy
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Résumé.

L’élaboration de données de grande dimension peut être menée en rassemblant des
données provenant de différents jeu de données indépendants. Mais que se passe-t-il si
l’on s’intéresse à l’effet global d’un prédicteur dans le cas où le type de variable ou la
direction de l’effet dépend du jeu de données? Parmi les modèles parcimonieux, le “Joint
Lasso” permet de construire un modèle spécifique à chaque jeu de données tout en liant les
modèles par une pénalité Lasso. Cela permet de traiter les différents jeux de données de
manière indépendante tout en ayant une sélection globale de prédicteurs. La Régression
des moindres carrés partiels (PLS) est une méthode populaire dans l’étude des données
Omics. Une de ses extensions parcimonieuses est la “sparse group Partial Least Square”.
Une application de l’idée du “Joint Lasso” à la sgPLS est proposée, ce qui permet d’ouvrir
de nouvelles perspectives en pleiotropie, où une variable Omics peut avoir un effet sur
plusieurs variables, et ce, même si dans différents jeux de données, la nature du phénotype
ou la direction des effets varie d’un jeu de données à l’autre.

Mots-clés. Données de grande dimension, Épidémiologie génétique, Méthodes parci-
monieuses, Pénalisation Lasso, Pléiotropy, Régression des moindres carrés partiels.

Abstract.
The edification of high dimensional data can be achieved by the gathering of different

independent data. But what happens when we want to infer global properties about a
predictor when different types of dependent variables or opposite effects exist among the
different data sets? In sparse models, Joint Lasso allows to build one model specific to
each data set while linking the models through a penalty. This allows to handle data
sets different effects but with a unique overall selection of predictors. The Partial Least
Square (PLS) is a popular dimension method in Omics data analysis. The sparse group
Partial Least Square (sgPLS) is one of its sparse formulation where a priori grouping of
variables are known. An application of the joint Lasso idea to the sgPLS is proposed. It
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leads to novel perspectives in peliotropy where one Omic predictor is supposed to have
an effect on several phenotype dependent variables. An interpretation of the overall data
can be given on Omic features even if different types of dependent variables or opposite
effects exist among the different data sets.

Keywords. Genetic epidemiology, High dimensional data, Lasso Penalization, Partial
Least Square, Pleiotropy, Sparse methods.

1 Context

Since past years data analysis applied to high dimension in all domains has arisen. Ex-
tracting information from ever larger data has become a trend in numerous fields and a
large number of observation need to be gathered in order to evaluate statistical models.
When data are hard to retrieve, gathering existing data sets is an efficient way for as-
sembling data of high dimension. However this technique have its drawbacks : existing
independent data sets can present intrinsic bias which can decrease the performance of
the models used.

Those biases imply an unwanted underlying structure that will interfere with the
signal we want to find. Bias can come from a difference in the source of information or
the process used during the recollection of the data. This set structure has to be taken
into account in order to improve the efficiency of the models. For instance, in genomics,
data can be gathered from different studies because of the cost of the experimentation.
Each clinical study may have been performed with its own chemistry protocol, with its
own experimental material and on its specific populations, and bias can arise among the
different data sets obtained. This “batch effect” is known and can significantly decrease
the power of the analysis as the article of Gagnon-Bartsch and Terence (2012) shows.
Another bias can occur in particular analysis where different “dynamics” exist between
the studies : a predictor can be highly correlated with independent variable, but the
direction of the correlation depends on the study.

We tackle the problem of “batch effect” for the sparse group Partial Least Square
(sgPLS) which is developped by Liquet et al. (2015) and which is an extension of the di-
mension reduction such as Partial Least Square (PLS) method introduced by Wold (1975).
The sparse PLS (sPLS) , introduced by the article from Kim-han Le Cao (2008), adds
a Lasso penalization to the PLS which shrink to zero the participation to the model of
the least relevant variables. Results highlight a smaller number of variable that are easier
to explain. In addition, noise of the signal is reduced and the power of the methods is
boosted. The sgPLS uses problem-specific prior information in order to improve the accu-
racy of the prediction and the interpretability of the model : the variables are supposed to
be gathered into groups of variables. Incorporation of this grouping structure is becoming
increasingly common due to the success of gene set enrichment analysis approaches, like
in Subramanian et al. (2005), and using a model taking into account this variable group
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structure allow to improve the performance and the readability of the results.
In this article we consider data that are composed of independent observation sets.

The observation sets are assumed to be known and are expected to introduce bias in the
data. The presented methods allow us to use the information about the edification of the
data set in order to improve the performance of the analysis. Although this theory have
been developed with the aim to answer a problem occurring in genomic public data sets,
it can be applied to any field where a certain observation set structure exists. Different
method using Lasso penalization on data structured toward observation sets are discussed.
In particular a “penalized PLS for structured data” is defined where separate PLS model
are linked together with a common-Lasso penalization. In the end variables selected
by the model are the same for all observation sets but the underlying model computes
separated models for each observation set, giving both readability and flexibility to the
model. We present the theoretical background for this method. Especially, we can show
that the common-Lasso constraint that is used (i.e. a penalization across studies) can
be be written as a standard Lasso with an overlaid group structure in an equivalent
formulation of the PLS problems. We extend also this idea of common-Lasso constraint
to a case where an a priori structure is known, where the variables are gathered into
groups.

2 Notations

Data are represented by X ∈ Rp×n and Y ∈ Rqn, two matrices, representing n ob-
servations of p predictors and q independent variables. Then X is a (n, p) matrix and
Y a (n, q) matrix. For any matrix A of size (a, b) , for i ∈ {1, . . . , a} its rows are noted
A(i,·) and for j ∈ {1, . . . , b} its columns are noted A(·,j) and for subsets ã ⊂ {1, . . . , a}
and b̃ ⊂ {1, . . . , b} resp. row and column sub-matrices are noted A(ã,·) and A(·,b̃). For
any vector ω of size a , for i ∈ {1, . . . , a} its elements are noted ω(i) and for subsets
ã ⊂ {1, . . . , a} ω(ã) represents the elements of the vector corresponding to the positions
in the subset.

Let us consider M different sets in the data. Noting, for m ∈ N, Mm a subset of
{1, . . . , n}, let M = (Mm)m=1..M be a partition of {1, ..., n} corresponding to the observa-
tion sets. We note #Mm = nm. Let P = (Pk)k=1..K be a partition of {1, ..., p} correspond-
ing to this variable group structure. We note #Pk = pk. We then have

∑K
k=1 pk = p.

Let us consider that the variables are gather in K groups and observations are gathered
in M studies. The partitions M and P can define resp. row blocks and column blocks of
both the matrices X and Y as shown in 1.

The Frobenius norm on matrices is noted ‖ ‖F . We note XT the transpose matrix of
X. The cardinal of a set S is noted #S. The positive value of a real number x is noted
(x)+ = |x|+x

2
.
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Figure 1: Illustration of data structured by group of variables and group observation.
Variables are assumed to be ordered by variable group.

3 sparse Partial Least Square : Partial Least Square

with Lasso penalization

In the literature, two formulations of the Partial Least Square exist, some extensions
of the PLS follow a first one usually called PLS1 (an article from Wang (2009) is an
example) and other extensions follow a second one called ”PLS2” (an article from Chun
and Kele (2010) is an example). We study here exclusively the first one.

Let X be a predictor matrix of size (n, p) and Y a matrix of independent vari-
ables of size (n, q). PLS finds successively couples of vector {u1, v1}, . . . , {ur, vr} for
r < min(p, q) where the couples are composed of vectors of length resp. p and q, maxi-
mizing Cov(Xui, Y vi) for any i ∈ {1, . . . , r}, under the constraint that the family of vec-
tors u1, . . . , ur and v1, . . . , . . . , vr are both of them orthogonal families (see Wold (1975)).
It can be solved considering successive minimization problems (see Shen (2008)), for
h ∈ {1, . . . , r}

Cov(Xh−1uh, Yh−1vh) for any h ∈ {1, . . . , r},

where X0 = X, Y0 = Y and Xh−1, Yh−1 are deflated matrices computed from uh−1,vh−1,
Xh−2, Yh−2 for h ∈ {2, . . . , n}. The deflation depends on the PLS mode that is chosen
(see for instance the article from Esposito Vinzi et al. (2010) or the article from Wold
(1975)). In this article we focus on the enhancement of the optimization problem and its
Lasso formulation in its h-th step. According to the article from Shen (2008) this step

4



can be written as

{uopt, vopt} = argmin
||u||2=||v||2=1

∥∥XTY − uvT
∥∥2
F

+ λP (u)︸ ︷︷ ︸
Lasso Penalty term

for sparse PLS

. (1)

where the notation h is removed in order to simplify the formulation because we are
interested in only one of the r steps of the PLS.

The sparse PLS introduces a penalization in this formulation of the problem. The
penalty P (·) forces lowest values of u to be set to zero. The parameter controlling the
degree of sparsity in the model is λ. In the presented formula the sparsity is applied only
to the vector u, but a similar penalization can be define for v. In the context of this arti-
cle we treat only the penalization of u but all the results stand also for a v penalization.
The following sections compare different ways of writing the sPLS optimization problem
presented in Equation (1) taking into account an observation or/and variable set structure.

Remark: Before analysis, the X and Y matrices are transformed by subtracting their
column averages. Scaling each column by their mean and standard deviation is also often
recommended as ot is shown in the article from Geladi and Kowalski(1986).

4 Joint Lasso

When variables can be gathered in groups (Figure 1), the classical sgPLS propose to
add a group-Lasso penalization to the classical PLS. Data are standardized within each
observation set, i.e. for every m ∈ {1, . . . ,M}, X(Mm,·) and Y (Mm,·) are standardized
instead of X and Y . The formulation of the problem is

{uopt, vopt} = argmin
u,v

∥∥Z − uvT∥∥2
F

+ λ (1− α)Pgroup(u) + λαPvariable(u)

with Pgroup(u) =
K∑
k=1

√
pk
∥∥u(Pk)

∥∥
2

, Pvariable(u) =

p∑
i=1

∥∥u(i)∥∥
2

and Z = XTY.

(2)

In the model the loading vectors u and v is composed of resp. p and q elements.
The penalization Pvariable forces single variables to be set to zero whereas the penalization
Pgroup forces sets of variables to be set to zero. The degree of sparsity in general in the
model is λ whereas the parameter controlling the balance between both kind of sparsity is
α. In this model elements of u corresponding to least relevant variables and least relevant
group of variables are set to zero.

The idea of the joint Lasso relies on minimizing M sgPLS problems linking the Lasso
penalty term of the different studies.
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Data are standardized within each observation set, i.e. for every m ∈ {1, . . . ,M},
X(Mm,·) and Y (Mm,·) are standardized instead of X and Y . The formulation of the “
sgPLS for structured data” is then :

{Uopt, Vopt} = argmin
U,V

∥∥∥Zm − U (·,m)V (·,m)T
∥∥∥2
F

+ λ (1− α)Pgroup(U) + λαPvariable(U)

with Pgroup(U) =
K∑
k=1

√
pk
∥∥U (Pk,·)

∥∥
F

, Pvariable(U) =

p∑
i=1

∥∥U (i,·)∥∥
2

and Z = XTY.

(3)

In the model the set of loading U is composed of p×m elements (p elements per U (·,m)).
The set of loading V is composed of q×m elements (q elements per V (·,m)). In this model
elements of U corresponding to least relevant variables and least relevant group of variables
are set to zero. In this model the same variables and variable groups corresponding to
least significant variables are set to zero for all U (·,m), m ∈ {1, . . . ,M}.

The solution is given by the following theorem :

Theorem 1. The marginal optima in ũ and ṽ in the sgPLS (Equation (1)) are : Fixing
v, the optimal uopt for “ sgPLS for structured data” is

u(Pk) = u
(Pk)
1

1− λ (1− α)

2

√∑
i∈Pk

∥∥∥u(i)1

∥∥∥2
2


+

= u
(Pk)
1

1− λ (1− α)

2
∥∥∥u(Pk)

1

∥∥∥
F


+

With u
(i)
1 = u

(i)
0

1− λα

2
∥∥∥u(i)0

∥∥∥
2


+

, u0 = Zv

and Z = XY T .

(4)

5 Field of applications

The method can be useful on any data presenting a group of variables and a set of
observations structure. It takes into account cases where : (i) Observations can present
biases due to the methods of experimentation (ii) The dependent variables can be different
(iii) The effect of a feature can be significant in different sets but of difference size and
hence can be unnoticed. The “ sgPLS for structured data” can scope with all of those
aspect.

Pleiotropy (Paaby et al. (2013)) is a field of genetics where a genomic feature can have
an effect on several phenotype traits. In an application to cancer data sets, if we search
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for a genomic feature related to different type of cancers, all of the preceding problems can
arise : (i) Set of observation can be obtained with different experimental protocols, with
different instruments of measures, with different populations and a bias can be introduced
(ii) The dependent variables may not be comparable (different cancers) (iii) A genomic
feature can have a positive effect on one type of cancer and a negative one on another
cancer, both effect can undermine each other in the overall analysis.
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