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Marcel Bräutigam 1 & Marie Kratz 2

1 ESSEC Business School Paris (CREAR) & Sorbonne University (LPSM) & LabEx
MME-DII, brautigam@essec.edu

2 ESSEC Business School Paris (CREAR), kratz@essec.edu

Abstract. In this study, we derive the joint asymptotic distributions of functionals of
sample quantiles and functionals of measure of dispersion estimators (the sample variance
and the sample mean absolute deviation).

Keywords. Asymptotic distribution; sample quantile; measure of dispersion; non-linear
dependence; correlation

1 Introduction

The joint asymptotic distribution between a measure of location estimator and a sample
quantile, for an identically and independently distributed (iid) sample, has been consid-
ered in the literature in two cases, when the location measure is chosen as the sample
mean and as the sample median, respectively. While this latter case is directly deduced
from the well-known asymptotics of a vector of sample quantiles (the sample median be-
ing a sample quantile itself), the joint asymptotics between the sample mean and sample
quantile were treated by Lin et al. (1980) and later, using another approach, by Ferguson
(1999). These results have then been used by Bera et al. (2016) to introduce a new
characterization and hence also test for the normal distribution.

Here we move from measures of location to measures of dispersion and present in the
main result (Theorem 1) joint asymptotics for functionals of sample dispersion measures
with functionals of the sample quantile. By measures of dispersion we mean well-known
quantities as the variance or standard deviation, but also less frequently used ones as, for
example, the mean absolute deviation (denoted MAD). The latter can relax the asymp-
totic constraints that come with the use of the sample variance (such as the existence of
the fourth moment of the underlying distribution).

Such joint asymptotics have not been yet considered in generality in the literature. Only a
few specific examples exist, see DasGupta and Haff (2006), Bos and Janus (2013). These
results can be seen as special cases of Theorem 1.
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The motivation for this study comes from previous work in financial risk management, see
Bräutigam et al. (2019) and Zumbach (2012, 2018). A further application of the results
presented concerns the risk measure estimation developed in Bräutigam and Kratz (2018):
The sample quantile can be seen as a Value-at-Risk (VaR) estimator and the functional
framework allows us to extend the results to Expected Shortfall (ES).

This note is part of a more general treatment and analysis of functionals of quantile esti-
mators (sample quantile and location-scale quantile estimator) and functionals of measure
of dispersion estimators (including apart from the sample variance, sample MAD also the
sample median absolute deviation around the sample median) that can be found in the
working paper by Bräutigam and Kratz (2018). The structure is to first present the main
result in Theorem 1, namely the joint bivariate asymptotic normality of functionals of the
sample quantile with either functionals of the sample variance or the sample MAD. This
result is then illustrated with an example in the next section.

2 Main Result

2.1 Notation

Let (X1, · · · , Xn) be a sample of size n, with parent random variable (rv) X, parent
cumulative distribution function (cdf) FX , (and, given they exist,) probability density
function (pdf) fX , mean µ, variance σ2, and quantile of order p defined as qX(p) :=
inf{x ∈ R : FX(x) ≥ p}. We denote its ordered sample by X(1) ≤ ... ≤ X(n). In the
special case of the standard normal distribution N (0, 1), we use the standard notation
Φ, φ,Φ−1(p) for the cdf, pdf and quantile of order p, respectively.

In this paper, we focus on the following three estimators. First, we consider two estimators
of the dispersion: the sample variance σ̂2

n, and the sample mean absolute deviation around
the sample mean (MAD) θ̂n, respectively. We introduce a unified notation:

Di =

{
σ2 for i = 1,

θ for i = 2,
and estimators D̂i,n =


σ̂2
n :=

1

n− 1

n∑
j=1

(Xj − X̄n)2, for i = 1,

θ̂n :=
1

n

n∑
j=1

|Xj − X̄n|, for i = 2,

where X̄n = 1
n

∑n
j=1Xj. As third estimator we consider the sample quantile qn, being

defined as
qn(p) = X(dnpe),

denoting by dxe = min {m ∈ Z : m ≥ x} the rounded-up integer-parts of a real number
x ∈ R.
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In addition, to be consistent in the notation with related results in the literature, we
generalise a notation used in Ferguson (1999), then in Bera (2016): Assuming that the
underlying rv X has finite moments up to order l, and that η is a continuous real-valued
function, we set, for 1 ≤ k ≤ l and p ∈ (0, 1),

τk(η(X), p) = (1− p)
(
E[ηk(X)|X > qX(p)]− E[ηk(X)]

)
. (1)

When η is the identity function, we abbreviate τk(X, p) as τk(p). Finally, the signum

function is denoted by sgn and defined, as usual, by sgn(x) :=


−1 if x < 0,

0 if x = 0,

1 if x > 0.

The standard notations
d→ and

P→ correspond to the convergence in distribution and in
probability, respectively. Further, for a sequence of random variables Xn and constants
an, we denote by Xn = oP (an) the convergence to zero in probability of Xn/an.

2.2 Theorem

Our main result gives the joint bivariate asymptotics of functionals of the sample quantile
with functionals of either the sample variance or sample MAD. We consider functionals
h1, h2 of the estimators that we assume to be continuous real-valued functions with existing
derivatives denoted by h′1 and h′2 respectively.

Theorem 1 Consider an iid sample with parent rv X having mean µ and variance σ2.
Assume that FX is differentiable at qX(p) and fX(qX(p)) > 0, that E[X2r] <∞ for r = 1, 2
respectively as well as fX(µ) > 0 for r = 1. Then the joint behaviour of the functionals
h1 of the sample quantile qn(p), for p ∈ (0, 1), and h2 of the sample measure of dispersion
D̂r,n, is asymptotically normal:

√
n

(
h1(qn(p))− h1(qX(p))

h2(D̂r,n)− h2(Dr)

)
d−→

n→∞
N (0,Σ(r)),

where the asymptotic covariance matrix Σ(r) = (Σ
(r)
ij , 1 ≤ i, j ≤ 2) satisfies

Σ
(r)
11 =

p(1− p)
f 2
X(qX(p))

(h′1(qX(p)))
2

; Σ
(r)
22 = (h′2(Dr))

2
Var (|X − µ|r + (2− r)(2FX(µ)− 1)X) ;

Σ
(r)
12 = Σ

(r)
21 = h′1(qX(p))h′2(Dr)×

τr(|X − µ|, p) + (2− r)(2FX(µ)− 1)τ1(p)

fX(qX(p))
,

τr being defined in (1).

The asymptotic correlation between the functional h1 of the sample quantile and the func-
tional h2 of the measure of dispersion is - up to its sign a± = sgn(h′1(qX(p))× h′2(Dr)) -
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the same whatever the choice of h1, h2:

lim
n→∞

Cor
(
h1(qn(p)), h2(D̂r,n)

)
= a±×

τr(|X − µ|, p) + (2− r)(2FX(µ)− 1)τ1(p)√
p(1− p) Var (|X − µ|r + (2− r)(2FX(µ)− 1)X)

.

Note that, if FX belongs to the class of location-scale distributions, then the asymptotic
correlation becomes independent of the mean µ and variance σ2 (see Bräutigam and Kratz
(2018)). Further, corresponding results with the sample median absolute deviation around
the sample median (MedianAD), and the location-scale quantile as alternative quantile
estimator can also be found in Bräutigam and Kratz (2018).

2.3 Outline of the proof

The main approach in proving Theorem 1 relies on the Bahadur representation of the
sample quantile (first proved in Bahadur (1966)). Here we use the version of Ghosh
(1971) where, assuming FX is differentiable at qX(p)) and fX(qX(p)) > 0, it holds

qn(p) = qX(p) +
1− Fn(qX(p))− (1− p)

fX(qX(p))
+Rn,p,

with Rn,p = oP (n−1/2). Using this representation and the bivariate central limit theorem
(CLT) with the sample variance gives the result in the case r = 2. For the case r = 1, i.e.
the sample MAD, we have that under fX(µ) > 0 (see e.g. Babu and Rao (1992), Segers
(2014))

θ̂n =
1

n

n∑
i=1

|Xi − µ|+ (2FX(µ)− 1)(X̄n − µ) + Sn,p,

with Sn,p = oP (n−1/2). Again, the asymptotics in the case of the sample MAD and sample
quantile follows from the use of this representation and the bivariate CLT.

3 An Example

To illustrate Theorem 1 in a specific case, we consider a normal sample (with mean µ and
variance σ2) and provide the asymptotic correlation of the sample quantile with either
the sample variance σ̂2

n or sample MAD θ̂n. We obtain:

lim
n→∞

Cor(qn(p), σ̂2
n) =

φ(Φ−1(p))Φ−1(p)√
2p(1− p)

and lim
n→∞

Cor(qn(p), θ̂n) =
φ(Φ−1(p))− (1− p)

√
2/π√

p(1− p)
√

1− 2/π
.

4



These two asymptotic correlations, as a function of the order of the quantile, p ∈ (0, 1), are
plotted in Figure 1. We see that these correlations are point-symmetric around p = 0.5,
taking the value 0 at p = 0.5 and tending to 0 for p → 0 and 1. Both correlations, with
the sample variance and sample MAD respectively, have a similar range. The maximum
correlation value for both is further in the tails. At the same time we observe that the
correlation with the sample MAD is higher for intermediate values, than with the sample
variance, whereas it is lower for values in the tail. This is a behaviour one could expect
since the MAD is a robust measure of dispersion with tail values that do not have such
an influence on the measure of dispersion as for the variance.

Figure 1: Asymptotic correlation between the sample quantile and either the sample
variance (in black) D̂1,n = σ̂2

n or the sample MAD (in red) D̂2,n = θ̂n.

A simulation study showing the good finite sample approximation of these asymptotics
has been performed in Bräutigam and Kratz (2018). Further examples and covariances
results (given also in the case of using the location-scale quantile estimator or the sample
MedianAD as measure of dispersion) can be found in the same reference.
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