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Résumé. Le vecteur des proportions de vote par parti sur une subdivision donnée d'un
territoire est un vecteur de données dites de composition (mathématiquement, un vecteur
appartenant a un simplexe). Les économistes politiques s’intéressent a l'impact des car-
actéristiques socio-économiques des unités géographiques sur le résultat des élections.
Parce que les données de parts de votes présentent souvent davantage de valeurs extrémes
que des observations issues d’une loi normale, nous avons décidé d’utiliser une distribu-
tion d’erreur de Student dans le modele de régression. Nous décrivons comment adapter
le modele de régression CODA a la distribution d’erreur multivariée de Student. Pour
un vecteur d’erreur gaussien, 'hypothese de coordonnées indépendantes équivaut celle
de coordonnées non corrélées. Cependant, cette équivalence n’est plus vraie lorsqu’on
envisage une distribution multivariée de Student. Dans cet article, nous nous concentrons
sur la construction d’un modele de régression CODA ayant des vecteurs d’erreurs de loi
de Student multivariées indépendantes. Les modeles sont ajustés aux données électorales
francaises des élections départementales de 2015.

Mots-clés. Distribution de Student multivariée indépendante, distribution de Stu-
dent multivariée non corrélée, modeles de rgression compositionnelle, estimateur de max-
imum vraisemblance, queue lourde, ...

Abstract. In a multiparty election, the vote shares form a composition vector (math-
ematically, a vector belonging to a simplex). Political economists are interested by the
impact of the socio-economic characteristics of the geographical units on the outcome
of the elections. Because vote shares data often exhibit heavy tail behavior, we decide
to use a Student error distribution. We describe how to adapt the CODA regression
model to the multivariate Student error distribution. For a Gaussian errors vector, the
assumption of independent coordinates is equivalent to the assumption of uncorrelated
coordinates. However, this equivalence is no longer true when considering a multivari-
ate Student distribution. In this paper, we concentrate on building a CODA regression
model with multivariate independent Student error vectors. The models are fitted on
French electoral data of the 2015 departmental elections.

Keywords. Independent multivariate Student distribution, Uncorrelated multivari-
ate Student distribution, compositional regression models, Maximum Likelihood Estima-
tor, heavy tail, ...



1 Introduction

Recently, many authors in political economy concentrate on building models and un-
derstanding the drivers of the outcome of a two-party electoral system (Beauguitte and
Colange (2013), Ansolabehere and Leblanc (2008)). The outcome of an election can be
influenced by the campaign strategies of candidates, demographic factors such as age,
domain of activity, rate of unemployment, and so on. In this work, we are interested in
exploring the impact of the characteristics of the demographics and social factors on the
outcome of the 2015 French departmental election. The outcomes of the election in this
multiparty system consist of vectors whose components are the proportions of votes per
party. In what follows, our attention focuses on the relationship between votes shares and
socio-economics factors such as age, education levels, domain of activities, unemployment
rate and so on by using CODA (COmpositional Data Analysis) regression models.

In the statistical literature, there are regression models adapted to share vectors in-
cluding CODA models, but also Dirichlet models, Student models and others. In these
models, the dependent and independent variables may be compositional variables (see
Mert et al (2016)). Honaker et al (2002), Katz and King (1999) use a statistical model
for multiparty electoral data assuming that the territorial units yield independent obser-
vations. Morais et al (2017) study the impact of media investments on brand’s market
shares with a CODA regression model. Nguyen et al (2018) study a CODA multivariate
regression model which uses the normal distribution to illustrate the impacts of socio-
economic factors on French departmental elections. However, this election data often
exhibit heavy tail behavior (see Katz and King (1999)). In order to eliminate the heavy
tail problem, a proposal found in the literature is to replace the Gaussian distribution by
the Student distribution.

In one dimension, the generalized Student distribution allows for heavier tails when the
shape parameter is small. In higher dimensions, there are several kinds of multivariate
Student models (see Johnson and Kotz (1972) and Kotz for overview). There are two
versions of the multivariate Student distribution: the independent Student (IT) and the
uncorrelated Student (UT) (see Prucha and Kelejian (1985)). Nguyen et al (2019) present
a full summary of these two versions. They consider a multivariate dependent vector and a
linear regression model with three different assumptions on the error term distribution: the
Gaussian distribution (€y), The Uncorrelated Student distribution (ey7), the Independent
Student distribution (e;7). Nguyen et al (2019) derive some theoretical properties of the
UT model and propose a simple iterative reweighted algorithm to compute the maximum
likelihood estimators in the IT model. However, Nguyen et al (2019) show that the UT
model has limitation of assumption of the single realization. This restricts the properties
of the maximum likelihood estimators and prevent the use of tests against the other two
models. Thus, we will concentrate in multivariate I'T case in this paper.

Vote share data of the 2015 French departmental election for 95 departments in France



Table 1: Data description.

Variable name  Description Averages

Vote share Left(L), Right(R), Extreme Right(XR) 0.37, 0.388, 0.242

Age Age_1840, Age_4064, Age_65. 0.313, 0.432, 0.255

Diploma <BAC, BAC, SUP. 0.591, 0.16, 0.239

Employment AZ, BE, FZ, GU, OQ 0.031, 0.099, 0.049, 0.439, 0.382
unemp The unemployment rate 0.117

employ_evol Mean annual growth rate of employment (2009-2014) -0.145

owner The proportion of people who own assets 0.616

income_ tax The proportion of people who pay income tax 0.552

foreign The proportion of foreigners 0.050

are collected from the Cartelec website ! and corresponding socio-economic data (for 2014)
have been downloaded from the INSEE website 2. Table 1 summarizes our data set and
see Nguyen et al (2018).

2 Compositional regression models

2.1 Principles of compositional data analysis

A composition x is a vector of D parts of some whole which carries relative information.
A D-composition x lies in the so-called simplex space S” defined by:

D
SP = {x=(21,..,ap) 1 2;>0,j=1,...D;> x; =1}
j=1

The vector space structure of the simplex SP is defined by the perturbation and
powering operations:

XDy :C($1y17"'7nyD)7 X, yc SD

ANOx=C(27,...,7)), Ais a scalar,x € S”.
where C(x) = (Z f’ill PR Z]-gj xj) is the closure operation.

The compositional matrix product, corresponding to the matrix product in the sim-
plex, is defined by

D T

D

by br;

BDX:C ijljy"';Hl‘jL]
i=1

Jj=1

Thttps://www.data.gouv.fr/fr/datasets/elections-departementales-2015-resultats-par-bureaux-de-
vote/
2https://www.insee.fr/fr /statistiques



where B = (b;), [=1,...,L, j=1,...,D, is a parameter matrix such that the column
vectors belong to SP jTB = 0p, Bjp = 01, where jz is a L x 1 column vector of ones,
and jT is the transposed of jr.

The simplex SP can be equipped with the Aitchison inner product (Aitchison (1985) and
Pawlowsky-glahn (2015)) in order to define distances. The compositional inner product
(x,¥). and the expected value E®Y are also defined in Pawlowsky-glahn (2015).

To define our regression model, we choose to work with ilr transformations from the
simplex space S? to the Euclidean space RP~1. An isometric log-ratio transformation (ilr)
is defined by ilr(x) = VEIn(x) where the logarithm of x is understood componentwise, VE
is a transposed contrast matrix (Pawlowsky-glahn (2015)) associated to a given orthonor-
mal basis (e;, -+ ,ep_1) of S by Vp = clr(ey, -+ ,ep_1). As in Pawlowsky-glahn (2015),
we use the following contrast matrix for D = 3

2/1/6 0
V= |-1/v/6 1/v2
—1/v/6 —1/V2

to define the log-ratio transformations. This particular matrix defines the following ilr
coordinates

: 1 2 x
ilry (x) = %(QIOg x1 —Inzy —logxs) = NG log \/%1:3
: 1 1 x

ilry(x) = E(log To — logxs) = 7 log x—z

The first ilr coordinate contains information about the relative importance of the first
component x; with respect to the geometric mean of the second and the third components
g = v/T2x3. The second ilr coordinate contains information about the relative importance
of the second component zs with respect to the third component x3. In our case, the
first ilr coordinate opposes the Left wing to the group of the Right wing and the Extreme
Right party and the second opposes the Right wing to the Extreme Right party.

2.2 CODA regression models

In this paper, we use the notations in Table 2. Let Y; denotes the compositional response
value of the ith observation, Y, € S”, and ng), qg=1,...,Q, denotes the value of the
qth compositional covariate for the ith observation, ng) €SP qg=1,...,Q, Z;, k=
1,..., K, denotes the kth classical covariate of the ith observation. Let us first introduce
the CODA regression model in the ilr coordinate space as follows:

Q K
ilr(Y;) = bo" + > _il(X)B) + > Zyicp + ili(e:) (1)

q=1 k=1



Table 2: Notations

Variable Notation Coordinates
Dependent Y; = Yi1,...,Yir) ir(Y;) =Y?
Compositional explanatory XZ(.q) = (Xi(f), R Xz‘(qD)q) ilr(ng)) = XEZ)*
Classical explanatory ki

General notations

L Number of components of the dependent variable

i=1,..., n Index of observations (n = 95 )

g=1,...,Q Index of compositional explanatory variables (Q = 3)

p=1,...,D4 Index of the coordinates for the compositional explanatory variables

k=1,...,.K Index of classical explanatory variables (K = 5)

where ilr(Y;), ilr(XZ(»q)) are the ilr coordinates of Y;, XEQ) (¢ = 1,...,Q) respectively,
ilr(Y;) € R ilr(XEQ)) € RP7!; by", B}, cj are the parameters in the coordinate
space, and ilr(¢;) are the residuals in the coordinate space, ilr(¢;) € RE™L. The classi-
cal distributional assumption is that ilr(e) follows a multivariate Gaussian distribution.
However our case, we will assume that ilr(e) follows an independent multivariate Student
(IT) distribution with zero mean and covariance matrix ;7.

Let @ denotes the summation, this regression model (1) can be written in the simplex as

Q K
Y. =boPB,IX P Ziock@e, i=1,....n (2)
k=1

g=1

where bg, By, ...,Bg,cy,...,cx are the parameters satisfying by € S¥, B, € SP4, ¢ =
L,...,Q, c,eSt k=1,....K,jB, = Op,, Byp, = 0r. The distributional assump-
tion is that ¢; € S* follows the independent multivariate Student (IT) distribution on
the simplex. We estimate the parameters of this model using the iterative reweighting
algorithm described in Nguyen et al (2019). Table 3 shows that the multivariate Stu-
dent regression model explains better than the multivariate Gaussian regression model.
Moreover, a test based on the Mahalanobis distance shows that we do not reject the
null hypothesis of the Student distribution, but we do reject the null hypothessis of the
Gaussian one.

Table 3: Multivariate Gaussian and Student regression models with compositional and
classical variables

Gaussian model Student model, v = 4
y-lr], 1] yilr[, 2] y-lr], 1] y-ilr[, 2]
Constant +1.01(0.91) —2.35(0.89)**  41.34(7.90)"*  —1.48(6.60)***
Age_ilrl +0.05(0.78) —0.53(0.76) +0.17(6.76)*  40.44(5.64)***
Age_ilr2 —0.35(0.45) —0.75(0.44)* —0.44(3.96)***  —0.94(3.31)***
unemp_rate =7.31(2.77)"  +13.1(2.71)"*  —7.94(24.1)**  410.6(20.1)*
income_tax rate  —0.42(1.00) +0.19(0.98) —1.02(8.69)***  —0.82(7.26)***
Note: *p<0.1; *p<0.05; ***p<0.01
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