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Résumé. Les modèles partiellement linéaires à un indice sont des outils utiles pour
capturer les relations entre une variable réponse et un ensemble de covariables poten-
tiellement grand. L’approximation de la réponse est donnée par la somme d’un terme
linéaire et d’une fonction de lien non-paramétrique appliquée à une seconde combinaison
linéaire de covariables, généralement appelée l’indice. Cette approximation est définie par
rapport à une fonction de perte qui caractérise un modèle de loi pour la variable réponse
conditionnellement aux covariables. Nous considérons une famille générale de fonctions de
perte et étudions le modèle de régression partiellement linéaire à un indice correspondant.
Mis à part que certains moments doivent être finis, la loi conditionnelle du terme d’erreur
peut être aussi générale que possible. L’estimation se fait par vraisemblance empirique
via une condition sur les moments dans laquelle nous utilisons un estimateur de la fonc-
tion de lien. Nous montrons la pivotalité asymptotique du rapport de vraisemblance sous
des conditions peu restrictives. Nous proposons une procédure automatique simple qui
permet de régler les paramètres nécessaires à l’estimation de la fonction de lien.

Mots-clés. Lissage à noyaux, modèles semi-paramétriques, moments conditionnels,
rééchantillonnage multiple, théorème de Wilks.

Abstract. Partially linear single-index models represent a versatile tool to capture the
relationship between response variables and possibly high-dimensional covariate vectors.
The approximation of the response is given by the sum of a linear term and of a nonpara-
metric link function of a second linear combination of covariates, usually called the index.
This approximation is defined with respect to a loss function which characterizes a feature
of the conditional law of the response given the covariates. We consider a general family
of loss functions and investigate the corresponding partially linear single-index regression
models. Except for imposing some moments to be finite, the conditional law of the error
term is allowed to be general. For the inference, we adopt the empirical likelihood (EL)
approach based on a class of moment conditions in which we plug-in estimates of the
nuisance link function. We show the asymptotic pivotality of the likelihood ratio under
weak high-level conditions. A simple data-driven choice of the tuning parameter for the
estimation of the link function is proposed.

Keywords. conditional moments, kernel smoothing, multiplier bootstrap, semipara-
metric models, Wilks Theorem
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1 Introduction

The observations are realizations of some random covariate vectors X ∈ RdX and W ∈
RdW and of a response variable Y ∈ R. The components of the vectors X and W could
be continuous or discrete random variables. Consider a loss function L(u; v) = L(u− v),
u, v ∈ R, with L(·) a nonnegative piecewise differentiable convex function such that L(0) =
0, and let ξ(·) be its piecewise derivative. For instance, we can consider the quadratic loss
(L(v) = v2, ξ(v) = 2v), the quantile loss (for τ ∈ (0, 1), L(v) = |v| + (2τ − 1)v, ξ(v) =
2(τ − 1{v ≤ 0})), the expectile loss (for τ ∈ (0, 1), the loss is L(v) = |τ − 1{v ≤ 0}|v2
and ξ(v) = 2v{(1− τ)1{v ≤ 0}+ τ1{v > 0}})...

We propose a general semiparametric partially linear single-index model (PLSIM)

Y = X>θ1 + h(W>θ2) + ε, with E(ξ(ε) | X,W ) = 0 a.s., (1)

where θ = (θ>1 , θ
>
2 )> ∈ Θ = Θ1 ×Θ2 ⊂ Rdθ , dθ = dX + dW , are unknown parameters and

h(·) is an unknown univariate real-valued function (often seen as a nuisance function).
Let θ0 = (θ>0,1, θ

>
0,2)
> be the true value of θ and h0(·) the true function of W>θ0,2 in

the model (1). The error term ε is not necessarily independent of X and W , we only
impose the identification condition that ξ(ε) has a zero conditional expectation given the
covariates. The nonparametric part of the model represented by the function h0 could
absorb any constant in its value and in its argument. One common approach to restrict
θ2, for identification purposes, is to set the norm of θ2 equal to 1 and the sign of one of
its components.

Our framework includes many semi-parametric models. The single-index models rep-
resent the particular case where the linear part X>θ1 no longer appears (dθ = dW ). Kong
& Xia (2012), Ma & He (2016), Zhao et al. (2017) considered the single-index modeling
in the quantile regression context, which could be obtained here with the quantile loss.
Xue & Zhu (2006) studied the single-index mean regression, a context that we obtain with
the quadratic loss. Zhu & Xue (2006) investigated the partially linear single-index mean
regression model. If W is a real-valued covariate, we recover the generalized partially
linear model (here dθ = dX + 1). See Robinson (1988) for the case of the mean regression.
See Boente et al. (2006) for the case of a robust regression. However, our framework
covers a much larger set of interesting situations that has not been yet investigated in
the literature, such as the partially linear single-index quantile, robust or expectile regres-
sions. Moreover, the model (1) allows other conditional moments to have an unknown
form. For instance, we allow for conditional variance of unknown form.

This paper is organized as follows. Section 2 presents the equivalent moment conditions
and Section 3 details the inference of the new approach. Numerical experiments are
conducted in Section 4 and a conclusion is given in Section 5.

2



2 Equivalent moment conditions

The general model introduced in equation (1) could be rewritten under the form of a
conditional moment equation

E(ρ(Z; θ, h) | X,W ) = 0 a.s., (2)

where Z = (Y,X>,W>)> and ρ(Z; θ, h) = ξ
(
Y −X>θ1 − h(W>θ2)

)
∈ R. The model (2)

requires a methodology for estimating θ and h, with h in a function space. A common
approach to avoid a simultaneous search involving an infinite-dimensional parameter is the
profiling (see Severini & Wong (1992), Liand et al. (2010) and Zhang et al. (2017) for the
profiling approach in the PLSIM context for mean and quantile regression, respectively).
Here, for each w in the support of W , and any θ = (θ>1 , θ

>
2 )>, let

hθ(t) = arg min
a

E(L(Y −X>θ1 − a) | W>θ2 = t), t ∈ R. (3)

If L(·) is strictly convex, the function hθ(·) is uniquely defined. As usually in PLSIM, it
will be assumed that hθ0(W

>θ0,2) = h0(W
>θ0,2). Hence, one expects that, for each x,w,

the value θ0 realizes the minimum of θ 7→ E(L(Y −X>θ1 − hθ(W>θ2)) | X = x;W = w).
To proceed towards the empirical likelihood inference, we use the following lemma which
shows that (2) can be written as a unconditional moment condition.

Lemma 1 Let ω(X,W ) some positive weight function of X and W . Under mild condi-
tions, assume that the model identification condition (2) holds true, then there exists a
neighborhood of (θ0, hθ0) over wich

E(ρ(Z; θ0, hθ0)J(θ0)
>∇θE(ρ(Z; θ0, h0) | X,W )ω(X,W )) = 0⇔ (θ, h) = (θ0, hθ0) (4)

where J(θ0) is a Jacobian matrix implied by the identifiability constraints made on θ and
ω(X,W ) is any positive weight function of X and W .

The weight function ω(·) could help to obtain the pivotalness, to avoid handling denom-
inators that could be close to zero, to avoid estimating unknown positive functions, and
to improve the quality of the inference. These properties motivate the moment condition
we will propose in the following for empirical likelihood inference.

3 Plug-in empirical likelihood for PLSIM

Let Z1, . . . , Zn be a random sample of Z = (Y,X>,W>)>. When the true function h0(·)
is known, hypothesis testing θ = θ0 can be done by using the empirical likelihood ratio

ELn(θ, h0) = max

{
n∑
i=1

ln (npi) : pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pimi(θ, h0) = 0

}
. (5)
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where mi(θ, h) = ρ(Zi; θ, h)J(θ)>∇θE(ρ(Zi; θ, h) | Xi,Wi)ω(Xi,Wi). Using the results
presented in Owen (1990), Qin & Lawless (1994) or Owen (2001), it can shown that

−2 log ELn(θ0, h0)→d χ
2
dθ−1, (6)

where χ2
p denotes a chi-square random variable with p degrees of freedom. This allows to

build a confidence region {θ : ELn(θ, h0) > c} for θ0, where c is a suitable threshold.
We show that, under some assumptions, the estimation of the nuisance function h is

negligible for hypothesis testing, when a suitable weight function is considered.

Theorem 1 (Wilks’ Theorem) In the class of general PLSIM introduced in equation
(1), using the moment equations we introduced in the previous section, with a suitable
weight function ω(X,W ), the pivotality property (6) holds when h0 is replaced by suitable

estimators ĥ, that is
−2 log ELn(θ0, ĥ)→d χ

2
dθ−1.

With the suitable choice of the weight function ω(X,W ), the high-level conditions we

impose on ĥ are mainly of two types: on one hand to belong to a suitable Donsker class of
smooth functions with probability tending to 1, and, on the other hand, to converge uni-
formly to h0 at the rate oP(n−1/4). Common estimators, such as kernel-based estimators,
satisfy our high-level conditions.

Nonparametric estimates ĥ require a rule for the smoothing parameter. Our extensive
empirical investigation shows that results are sensitive to this rule. The pivotality of
the empirical log-likelihood allows us to propose a novel data-driven rule for selecting
the smoothing parameter. Our rule is based on multiplier bootstrap, is very easy to
implement and perform quite well in applications.

4 Some empirical evidence

Data are simulated as follows. We consider the following independent variables A ∼
Be(2, 2), B ∼ Be(2, 2), Cj ∼ Be(2, 2) for j = 1, . . . , 5. The dimensions are dX = 1,
dW = 4, the observed covariates are defined by Wj = A + B + Cj for j = {1, . . . , 4},
X = A + C5, and the parameters are θ0,1 = 1 and θ0,2 =

[
1 −1 1 −1

]>
. We consider

two cases of PLSIM: a 25%-quantile regression with heteroscedastic shifted exponential
noise and a 25%-expectile regression with a heteroscedastic Gaussian noise. Two samples
sizes are considered (100 and 500), and for each situation 5000 replicates are generated.
The estimation of h is achieved with the locally linear method by considering bandwidths
b = n−1/3.1 + (n−1/6.9 − n−1/3.1)k/20 for k = 0, . . . , 20. Bandwidth selection is done with
R = 103 multiplier bootstrap samples.

We want to illustrate the behavior of the empirical likelihood ratio test and the fact
that the estimation of the non-parametric part is negligible. Thus, we test different values
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for the parameter: the true parameters and some shifted values (i.e., we test θ0 = θ̃ where

θ̃ = (θ̃1, θ̃2), θ̃1 = θ0,1 + c and θ̃2 = θ0,2

√
1− (c/10)2 + c|θ0,2|/10 for some deviation c).

Table 1 presents the empirical probabilities of rejection where the nominal level is 0.05.
We see that without deviation (i.e., the true parameter is tested), the nominal level is
reached when the sample size is large enough. Moreover, the probability of rejection tends
to one when the sample size increases for any deviation. Finally, note that the impact of
the estimation of function h(·) vanishes when n increases.

Quantile regression Expectile regression
deviation c n = 100 n = 500 n = 100 n = 500

h known h estimated h known h estimated h known h estimated h known h estimated
-1.6 0.65 0.88 1.00 1.00 0.56 0.48 1.00 0.96
-1.2 0.65 0.67 1.00 1.00 0.43 0.34 0.95 0.79
-0.8 0.64 0.39 1.00 0.95 0.30 0.24 0.69 0.45
-0.4 0.39 0.18 0.85 0.37 0.18 0.18 0.24 0.16
0 0.10 0.12 0.06 0.06 0.13 0.15 0.07 0.08
0.4 0.13 0.19 0.30 0.40 0.15 0.16 0.21 0.14
0.8 0.21 0.39 0.71 0.95 0.25 0.21 0.64 0.41
1.2 0.29 0.63 0.90 1.00 0.38 0.31 0.92 0.77
1.6 0.37 0.81 0.97 1.00 0.52 0.45 0.99 0.95

Table 1: Empirical probabilities of rejection for testing the parameters by considering
different deviations of the true parameters θ0 and a nominal level of 0.05.

5 Conclusion

We proposed a new EL-based approach for a general class of PLSIM. This method is
based on an equivalent characterization of the initial conditional moment restriction us-
ing unconditional moment restriction. The pivotality of the likelihood ratio EL remains
valid despite the fact that the nuisance function is estimated. This approach could be
easily extended to other situations. For instance, we could consider the case of a multi-
dimensional response variable (which implies multiple conditional moment restrictions).
The approach could also be extended to generalized PLSIM (e.g., binary response variable
modeled by a semi-parametric partially linear single index logit model).
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