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Résumé. Pour le problème de la classification fonctionnelle, il est bien connu que
l’analyse discriminante linéaire fonctionnelle peut obtenir une classification parfaite si la
dimensionnalité infinie est bien exploitée. Néanmoins, les données fonctionnelles étant
intrinsèquement infinies, la prise en compte de la réduction de dimensions joue un rôle
crucial dans sa réalisation. Les techniques standard de réduction des dimensions basées sur
l’analyse fonctionnelle en composantes principales et les méthodes des moindres carrés par-
tiels sont facilement disponibles à cette fin. D’autre part, il est de plus en plus nécessaire
d’intégrer l’explicabilité dans la formulation de l’analyse statistique, ce qui tend à favoriser
une solution simple et peu dense. Cette considération est bien développée pour les données
de dimension finie avec une pénalité de type lasso (`1), mais sa contrepartie de dimen-
sion infinie (L1) est rarement étudiée pour les données fonctionnelles. Dans cet article,
nous reformulons l’analyse discriminante linéaire fonctionnelle en tant que problème de
régularisation avec pénalité appropriée. L’utilisation de la formule de pénalisation présente
l’avantage supplémentaire de pouvoir incorporer certaines contraintes structurelles dans
des coefficients fonctionnels, tels que la faible densité et la régularité, comme nous le
souhaitons. En particulier, nous proposons une analyse discriminante linéaire fonction-
nelle régularisée avec une pénalité de fragmentation fonctionnelle de L1. Nous démontrons
que notre formulation a une solution bien définie et une propriété de dispersion fonction-
nelle souhaitable dans le sens de la sélection du domaine. De plus, notre solution converge
vers un classificateur optimal. Des études numériques sont incluses pour évaluer les per-
formances des échantillons finis et les comparer aux méthodes existantes.

Mots-clés. Explicabilité de l’apprentissage automatique, Modèles non-paramétriques,
Parcimonie et grande dimension, Problèmes inverses et parcimonie, Sélection du domaine.

Abstract. For functional classification problem, it is well known that functional lin-
ear discriminant analysis can achieve a perfect classification, if the infinite-dimensionality
is well exploited. Nevertheless, as functional data are inherently infinite-dimensional,
consideration of dimension reduction plays a crucial role in its realization. Standard di-
mension reduction techniques based on functional principal component analysis or partial
least squares methods are readily available for this purpose. On the other hand, there is
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an increasing need to incorporate interpretability within the formulation of our statistical
analysis, which tends to favour a simple and sparse solution. Such consideration is well
developed for finite dimensional data with lasso type (`1) penalty but its infinite dimen-
sional counterpart (L1) is rarely studied for functional data. In this article, we reformulate
the functional linear discriminant analysis as a regularization problem with appropriate
penalty. An added advantage of using penalty formulation is the possibility of embedding
some structural constraints in functional coefficient such as sparsity or smoothness as we
desire. In particular, we propose a regularized functional linear discriminant analysis with
L1 functional sparsity penalty. We demonstrate that our formulation has a well defined
solution and has a desirable functional sparsity property in the sense of domain selection.
In addition, our solution is shown to converge to an optimal classifier. Numerical studies
are included to assess finite sample performance and compare with existing methods.

Keywords. Domain selection, Functional sparsity, Interpretability, Inverse problems
and regularization, Non-parametric models.

1 Summary

One of the common ways to collect high dimensional data is through automatic collection
of records from continuous monitoring. Examples include spectrometric data in chemo-
metrics and environmental data of pollutants from air quality monitoring. Dealing with
such types of complex high dimensinal data requires us to consider the underlying struc-
tural constraints of the data. Incorporating this informaion in our analysis is important in
developing parsimonious statistical models. In this regard, such types of data are better
viewed as functional data in the sense that the underlying variable is of functional nature.
Although functional data are inherently infinite dimensional, the possibility of utilising
structural constraints of the functions such as continuity or smoothness offers an efficient
way to deal with high dimensional problems. Many novel techniques are developed under
functional data analysis framework. See Ramsay and Silverman (2005); Ferraty and Vieu
(2006); Hsing and Eubank (2015) for more details.

In this work, we are interested in a classification problem for functional data as curves.
Denote the functional predictor by X, observable on I and the class label by Y . Assume
that X is a member of two possible groups (Y = 0 or Y = 1). Suppose that X(t)|Y=0 and
X(t)|Y=1 for t ∈ I are square integrable stochastic processes with mean function µ0(t)
and µ1(t) respectively, and have common covariance function γ(s, t) = cov(X(s), X(t)).
Let π0 = Pr(Y = 0), π1 = Pr(Y = 1) and µ(t) = µ1(t) − µ0(t). We seek a classification
rule that depends on the linear map with unknown direction β

Fβ(X) =

∫
I
X(t)β(t) dt = 〈X, β〉 . (1)
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This defines a functional linear classification problem, where we wish to determine β(·)
in such a way that the linear map yields a good class separation. Although simple, the
linear classifier can achieve a perfect classification if the infinite-dimensionality is well ex-
ploited (Delaigle and Hall, 2012; Berrendero et al., 2018), a distinctive feature compared
to finite dimensional problems. Delaigle and Hall (2012) demonstrate such phenomenon
with a simple linear centroid classifier and suggest a practical representation using com-
ponents obtained from functional principal component analysis and partial least squares.
Kraus and Stefanucci (2017) propose alternative regularisation methods to compute the
representation.

While optimal performance is an important criterion to consider, the increasing im-
pact of statistical analysis on modern scientific investigations has created the need of
careful consideration of interpretability of the outcomes of our analysis. Particular in-
stances of interpretability are formulated under the sparsity regularization. For example,
James et al. (2009) and Zhou et al. (2013) propose a lasso-type sparsity regularization for
interpretability under regression setting and Tian and James (2013) under classification
setting, advocating a simpler form of solution that contains zero regions. Although the
development still relies on the discrete concept of sparsity whose property is not directly
applicable to infinite dimensional setting (Kneip et al., 2016; Roche, 2018), these works
demonstrate the importance of such consideration in infinite-dimensional problems. Func-
tional formulation under non-parametric models is relatively scarce. Few exceptions are
Wang and Kai (2015), Tu et al. (2018), Lin et al. (2017) and Hall and Hooker (2016), all
of which are concerned with functional linear regression problems.

In this work, we seek an alternative approach to functional linear classification with
a direct estimation method to address dimensionality, optimality and interpretability.
We specifically utilize the results in Delaigle and Hall (2012) and reformulate it as a
regularization problem with an appropriate choice of penalty function. An advantage of
using penalty formulation is the possibility of incorporating various structural constraints
in functional data such as functional sparsity and smoothness as we desire.

So far the regularization methods have been used mostly for either smoothness (
∫

(f (m))2)
in regression (e.g. Kneip et al. (2016)) or invertibility (

∫
f 2) (Kraus and Stefanucci, 2017)

in classification, with L2-type penalty. The idea of sparsity as variable selection with `1-
type penalty is actively developed in discrete high dimensional setting, but much less for
the infinite-dimensional functional setting. It is much more difficult to extend it with
a fundamentally discrete notation of sparsity. We argue that the counterpart of the `1
penalty is the functional L1 penalty, but the latter is hardly used in statistical inference
framework. In our formulation, we extend the usual regularization methods with differ-
entiable L2-type penalty to non-differentiable L1 penalty function to address functional
sparsity and domain selection, demonstrating its utility in infinite-dimensional problems
arising in functional data analysis.
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