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Résumé. Le modèle à blocs stochastiques est un modèle de graphe aléatoire qui vise
à partitionner les sommets d’un réseau en groupes appelés blocs, ou plus généralement
clusters. Dans la plupart des réseaux du monde réel, les liens entre les noeuds sont affectés
par des poids qui représentent la force des relations entre ces noeuds. Il est évidemment
très intéressant de pouvoir modéliser et regrouper ces réseaux pondérés en utilisant la
structure du réseau et la capacité de leurs liens. Cet article présente le modèle à blocs
stochastiques binomial, qui est un modèle probabiliste pour les réseaux ayant les poids
sur les arêtes distribués selon une loi binomiale. Un algorithme variationnel d’espérance-
maximisation est proposé ici pour effectuer l’inférence. Enfin, nous démontrons l’efficacité
de la méthode proposée en considérant un réseau de co-citation dans un contexte de text
mining.

Mots-clés. Modèle à blocs stochastiques binomial, clustering, classes latentes, fouille
de textes, inférence variationnelle, réseaux pondérés.

Abstract. The Stochastic Block Model is a random graph model which aims to par-
tition the vertices of a network into groups called blocks, or more generally clusters. In
most real-world networks, the ties among nodes have weights assigned to them which rep-
resent the strength of relationship between these nodes. It is obviously of strong interest
to be able to model and cluster those weighted networks using the structure of network
and the capacity of their ties. This paper introduces the binomial stochastic blockmodel,
a probabilistic model for networks with binomial distributed edges weights. A variational
expectation-maximization (VEM) algorithm is proposed here to perform inference. Finally,
we demonstrate the effectiveness of the proposed method by considering a co-citation
network in a text mining context.

Keywords. Binomial stochastic blockmodel, clustering, latent classes, text mining,
variational inference, weighted networks.
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1 Introduction

In this work, we are interested in the estimation of the parameters in a binomial stochastic
block model for weighted networks as well as in detecting the community structure in these
networks. The stochastic block model proposed by Anderson et al. (1992) and Holland
et al. (1983) is a probabilistic random graph model which aims to produce clusters in
networks. In this model, the nodes of the network are divided into disjoint blocks such that
the nodes belonging to the same block have the same probability called inter-connection
probability and the same connection probability with nodes belonging to others blocks.
This probability is called intra-connection probability.

In most of the methods already treated in this context, the SBM is restricted to binary
networks, in which edges are unweighted. Since the most of networks are weighted, we
study here the case of weighted networks, where each edge is associated with an integer
value representing the capacity of ties among nodes.

We proposed here the variational expectation maximization (VEM) algorithm developed
by Daudin et al. (2008) and Jaakola (2000) which is an approximate method based on
a variational approach. This approach is known to be consistent under the SBM model
according to Celisse et al. (2012).

The proposed method allow us to estimate the parameters of the model for a fixed
number of clusters in the network. We are interested in determining the one that will
optimally fit the data. Daudin et al. (2008) proposed the Integrated Classification Like-
lihood (ICL) criterion to estimate the optimal number of clusters in a SBM model. This
method is an approximation of the complete data likelihood.

2 The Model

A weighted undirected network is defined by its set of n nodes [n] = {1, . . . , n} for all
n ≥ 1 and by its edge-weighted symmetric matrix X of size n. Thus, Xij = mij if there
is an edge joining the nodes i and j and is weighted by the value mij and 0 otherwise.
We assume that the network has a fixed number of blocks equal to Q. The network is
assumed to be generated as follows

• Each vertex i in the network belongs to an unobserved group q such as:

Zi ∼M(1, α = (α1, . . . , αQ)),

where Z = (Zi)i∈{1,...,N} is a latent vector describing the belonging of the node i to
cluster q when Ziq = 1 and not when Ziq = 0 , M is the multinomial distribution
and α is the vector of class proportion such as

∑
q αq = 1.

• Each observed edge Xij joining node i, that belongs to group q, to node j , that
belongs to group l, is sampled from a Binomial distribution such as:

Xij|ZiqZjl = 1 ∼ B(m,πql),
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where the parameter m represents the maximal weight on the edges of the network
and π = (πql)ql represents the Q×Q matrix of connection probabilities between the
latent groups of the network.

In the sequel, we are interested in the case of weighted undirected network without self-
loops. However, we claim that all results can be extended to directed networks, with or
without self-loops.

2.1 Variational Inference

The log-likelihood of the incomplete data can be obtained through the marginalization
logPθ(X) = log

∑
Z Pθ(X,Z), where θ is the set of the parameters of the model θ = (α, π)

and Pθ(X,Z) is the likelihood of the complete data defined by

logPθ(X,Z) =
∑
i

∑
q

Ziq log(αq)+
∑
i<j

∑
q,l

ZiqZjl(logCXij
m +Xij log πql+(m−Xij) log(1−πql)).

This marginalization involves a summation over every possible matrix Z and thus may
not be tractable except for small networks. So we use iterative method to tackle this
issue. The expectation maximization (EM) algorithm is intractable in this context since
the E-step require the computation of Pθ(Z|X) which is impossible since the edges of the
network are not independent. Following the work of Blei et al. (2003), we propose to rely
on a variational decomposition. In the case of the SBM model, it leads to

logPθ(X) = Jθ(RX(.)) + KL(RX(.) ‖ Pθ(.|X)),

where Pθ(Z|X) is the true conditional distribution of Z given Y , RX(Z) is an approximate
distribution of Pθ(Z|X), KL is the Kullback-Leibler divergence between Pθ(Z|X) and
RX(Z) defined by

KL(R(.) ‖ Pθ(.|Z)) = −
∑
Z

RX(Z) log
Pθ(Z|X)

RX(Z)

and Jθ(RX(.)) is the lower bound of the form

Jθ(RX(.)) =
∑
Z

RX(Z) log
Pθ(X,Z)

RX(Z)
.

Since logPθ(X) does not depend on the distribution RX(.), maximizing the lower bound
Jθ(RX(.)) with respect to RX(.) is equivalent to minimize the KL divergence. Following
Blei et al. (2003), we assume that the distribution RX(Z) can be factorized over the
latent variable Z as follows

RX(Z) =
n∏
i=1

RX,i(Zi) =
n∏
i=1

h(Zi; τi),
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where {τi ∈ [0, 1]Q, i = 1, . . . , n} are the variational parameters associated with {Zi, i =
1, . . . , n} such as

∑
q τiq = 1, ∀i ∈ {1, . . . , n} and h is the multinomial distribution with

parameters τi.
The comination of the equations above leads to

Jθ(RX) = −
∑
i

∑
q

τiq log τiq +
∑
i

∑
q

τiq logαq +
∑
i<j

∑
q,l

τiqτjl(logCXij
m +Xij log πql

+(m−Xij) log(1− πql)).

2.2 Optimization

In this section, we develop the steps of the VEM algorithm. These steps aims to estimate
the parameters of the model by maximizing the lower bound Jθ(RX). The VEM algorithm
alternates between the optimization of τ and θ = (α, π) until the convergence of the lower
bound.

During the variational E-step, the parameters of the model are fixed. By maximizing
the lower bound Jθ(RX) with respect to τ , we obtain the estimate of τ by the following
fixed point relation

τ̂iq ∝ αq
∏
j

∏
l

(
CXij
m π

Xij

ql (1− πql)m−Xij

)τ̂jl
. (1)

The estimation of τ is obtained from (1) by iterating a fixed point algorithm until con-
vergence.

Conversely, during the M-step, the parameter τ is fixed. By maximizing the lower
bound Jθ(RX) with respect to α and under the condition

∑
q αq = 1, we obtain the

estimate of αq

α̂q =
1

n

∑
i

τiq.

Moreover, by maximizing the lower bound Jθ(RX) with respect to π, we obtain the esti-
mate of πql

π̂ql =

∑
i<j τiqτjlXij

m
∑

i<j τiqτjl
.

2.3 Model selection

In the sections above, we showed that the SBM model function requires number of latent
groups Q as an input argument. We are interested here in estimating the optimal number
of clusters Q̂.

Daudin et al. (2008) proposed the Integrated Classification Likelihood (ICL) criterion
to estimate Q in a SBM model. This method is an approximation of the complete data

4



likelihood. The ICL is of the form

ICL(Q) =
∑
i

∑
q

τ̂iq log α̂q +
∑
i<j

∑
q,l

τ̂iq τ̂jl(logCXij
m +Xij log π̂ql + (m−Xij) log(1− π̂ql))

−1

2

(
Q(Q+ 1)

2
log

n(n− 1)

2
− (Q− 1) log n

)
.

The VEM algorithm is run for different values of Q and Q̂ is chosen such that ICL is
maximized.

3 Numerical experiments

The Reuters-21578 data set contains a collection of documents that appeared on Reuters
newswire in 1987. For more explanation about this data, we refer the reader to (Lewis
(1997)). We are interested in this example in 20 exemplary news articles from the Reuters-
21578 data set of topic crude. The data is available in the package tm of the software R

under the name of crude data where all documents belong to the topic crude dealing with
crude oil see (Feinerer el al. (2008)). We build a term-by-document matrix of the corpus
crude by doing a text mining treatment. We interpret a term as important according
to a simple counting of frequencies, we chose the frequent terms that co-occur at least
six times in the documents. Then, we compute the correlations between them in the
term-by-document matrix and we chose those out higher than 0.5. The figure visualizing
the correlation between these terms is available in (Feinerer el al. (2008)) .

We transform the term-by-document matrix into a one mode matrix which is the term-
by-term matrix. The network associated to this matrix is an undirected network of 21
vertices and 97 edges, where each vertex is a term and there is an edge between a pair of
terms if they co-occur together at least one time in the documents. The edge weights are
represented in the obtained matrix where each cell indicates the number of documents
where both the row and the column terms co-occur.

The graph associated with this network is visualized in Figure 1 using Gephi software
with the layout algorithm Force Atlas.

We apply our algorithm. We obtain that the terms are grouped into four clusters as
presented in Table 1. Table 1 shows the distribution of the network’s terms into groups

Clusters Vertices
1 oil opec prices
2 mln bpd month sources production saudi market
3 billion budget riyals government economics indonesia report
4 exchange nymex futures Kuwait

Table 1: Grouping the terms of the network of terms of the Reuters-21578 corpus into
clusters using binomial SBM.
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Figure 1: Network of terms of the the Reuters-21578 corpus visualization with Gephi.

which means that the terms of each group are frequently co-occuring together in the
documents.
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