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Résumé

Dans cet exposé, nous introduisons une nouvelle approche pour construire des
modèles prédictifs dans les problèmes d’apprentissage supervisé en prêtant atten-
tion à la structure de regroupement des données d’entrée. Cet exposé est basé sur
un travail conjoint de Has et al. (2018). Nous nous intéressons aux situations où
les données d’entrée sont composées de plusieurs grappes et qu’il existe différents
modèles sous-jacents sur ces grappes. Ainsi, au lieu de construire un seul modèle
prédictif sur l’ensemble des données, nous proposons dans un premier temps d’uti-
liser l’algorithme K-means avec différentes options de divergences de Bregman qui
sont les membres d’une large classe de mesures de dissimilarité, pour approcher
la structure des données d’entrée. Pour chaque divergence, nous construisons un
prédicteur local sur chaque cluster observé, ce qui conduira à un modèle global qui
est la collection de ces prédicteurs locaux. Dans un deuxième temps, nous propo-
sons de combiner intelligemment tous ces modèles globaux de manière à préserver
la qualité de la combinaison, voire à l’améliorer, par rapport au meilleur modèle
de la combinaison. Les résultats numériques réalisés sur plusieurs types de données
simulées et une donnée réelle de Air Compressor montrent qu’il est très intéressant
de prendre en compte la structure de clustering des données d’entrée, ainsi que
d’utiliser des méthodes d’estimation combinées pour améliorer les performances de
modèles prédictifs.

Mots-clés. Apprentissage supervisé, divergences de Bregman, cluster, modèles
prédictifs, méthode d’estimation combinée.

Abstract

In this talk, we introduce a new approach to construct predictive models in
supervised learning problems by paying attention to the clustering structure of the
input data. This talk is based on a joint work of Has et al. (2018). We are interested
in the situations where the input data consists of more than one cluster, and there
exist different underlying models on these clusters. Thus, instead of constructing
a single predictive model on the whole data, we propose in the first step to use
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K-means clustering algorithm with different options of Bregman divergences which
are the members of a broad class of dissimilarity measures, to approximate the
clustering structure of the input data. For each divergence, we construct a local
predictor on each observed cluster, and this will lead to a global model which is the
collection of these local predictors. In the second step, we propose to combine all of
these global models in a smart way in a sense that the quality of the combination
is asymptotically preserved, or even improved compared to the best model of the
combination. The numerical results carried out on several kinds of simulated data
and a real data set of Air Compressor, show that it is very interesting to take
into account the clustering structure of the input data, and also, to use combining
estimation methods to improve the performances of predictive models.

Keywords. Supervised learning, Bregman divergences, cluster, predictive mod-
els, combined estimation method.

1 Introduction

We assume that the number of clusters K of the input data is available. In the first step
of the unsupervised learning part, our goal is trying to identify the unknown clustering
structure of the input data using a broad class of dissimilarity measures known as Bregman
divergences (See Bregman (1967)). Each member of this class is defined associated to a
strictly convex and continuously differentiable function φ : C → R where C ⊂ Rd is a
measurable convex subset of Rd and its relative interior is denoted by int(C). A Bregman
divergence dφ : C × int(C) → R, indexed by φ is defined for any pair (x, y) ∈ C × int(C)
by

dφ(x, y) = φ(x)− φ(y)− 〈x− y,∇φ(y)〉 (1)

where 〈., .〉 denotes the standard inner product defined on Rd, and ∇φ(y) denotes the
gradient of φ computed at a point y ∈ int(C). A Bregman divergence is not necessarily a
metric. However, it carries many interesting properties, and the most interesting one is
mean as minimizer property given in the proposition below. See, for example, Banerjee
et al. (2005) and Fischer (2010).

Proposition (Mean as Minimizer Property) Suppose U is a random variable over an
open set O ⊂ Rd, then we have,

E[U ] = argmin
x∈O

E[dφ(U, x)]
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1.1 Relationship between Bregman divergences and Exponen-
tial family

A strong motivation of using Bregman divergences in K-means algorithm, to approxi-
mate the clustering structure of the input data, is its relationship with a broad class of
probability distributions known as Exponential family. This relationship is given in the
following theorem.

Theorem (Banerjee et al. (2005)) Each member of a regular exponential family corre-
sponds to a unique regular Bregman divergence. Mathematically, if the distribution of a
random variable X is a member of an exponential family Eψ and if φ is a convex conjugate
of ψ defined by

φ(x) = max
y
{〈x, y〉 − ψ(y)}

then there exists a Bregman divergence dφ such that the following representation holds,

fθ(x) = exp(〈θ, T (x)〉 − ψ(θ)) = exp(−dφ(T (x),E[T (X)]) + φ(T (x))) (2)

K-mean clustering with a Bregman divergence dφ is provided in the following algorithm.

Algorithm

1. Randomly initialize the centroids
C = {c1, c2, ..., cK} among the data points.

2. for i = 1, 2, ..., n, assign xi to kth cluster if

dφ(xi, ck) = min
1≤j≤K

dφ(xi, cj)

3. Denote Ck the set of points contained in the kth cluster then,
for k = 1, 2, ..., K, recompute the new centroid by,

cnewk =
1

|Ck|
∑
x∈Ck

x

Repeat step 2 and 3 until convergence.

1.2 Candidate estimator construction

We suppose that each cluster contains enough data points so that a separate local predictor
could be constructed. The choices of these local predictors should not be too complicated
as the input-output relation within each cluster should not be too complicated either.
Take, for example, linear regression for regression and logistic regression for classification.
Thus, a Bregman divergence would lead to a candidate estimator which is the collection
of all the constructed local predictors.
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2 Consensual aggregation and applications

2.1 Consensual aggregation methods

Choosing the “best” one among all the candidate estimators is not a simple problem
as neither the distribution nor the clustering structure of the input data is available.
Therefore, we propose in the second step to combine all of these candidate estimators in a
smart way so that the quality of the best model is asymptotically preserved or improved.
In this part, we consider several consensual aggregation methods in both classification and
regression problems which are based on the consensual predictions of the training sample.
This idea was first introduced by Mojirsheibani (1999) in a classification setting. Later,
this idea was extended by Biau et al. (2016) into a regression framework which is known
as COBRA method, and then it was extended into both frameworks of classification and
regression by Fischer and Mathilde Mougeot (2019) in a study known as MixCOBRA. We
also consider the kernel-based version of consensual aggregation in regression with several
options of kernel functions. More precisely, each consensual regression in this study takes
the following form,

CombR(x) =
1

n

n∑
i=1

Wn,i(x)yi (3)

where the weight Wn,i(x) is defined differently as follow,

• COBRA method (Biau et al. (2016)): for a given threshold ε > 0,

Wn,i(x) =

∏M
`=1 1{|m`(xi)−m`(x)|<ε}∑n

j=1

∏M
`=1 1{|m`(xj)−m`(x)|<ε}

• Kernel based COBRA: for a given smoothing parameter h > 0,

Wn,i(x) =
Kh(m(xi)−m(x))∑n
j=1Kh(m(xj)−m(x))

with a kernel function K such that Kh(x) = K(x/h) and a vector of predictions at
a point x ∈ Rd,m(x) = (m1(x),m2(x), ...,mM(x)) ∈ RM .

• MixCOBRA (Fischer and Mathilde Mougeot (2019)): for a given couple of smooth-
ing parameter α, β > 0,

Wn,i(x) =
K(xi−x

α
, m(xi)−m(x)

β
)∑n

j=1K(
xj−x
α
,
m(xj)−m(x)

β
)

where a Rd+M -vector of individual in the equation is composed of the original input
x ∈ Rd and the vector of predictions m(x) ∈ RM .
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2.2 Applications

At the end of this study, we illustrate the performances and the benefits of the constructed
estimators with several experiments carried out on several kinds of simulated data. The
numerical results show that the quality of the combination is quite satisfactory and some-
times even better compared to the best candidate estimator in the aggregation. The
numerical results of the constructed regression models performed on a real data set of Air
Compressor given in Cadet et al. (2005) also show that even without the exact informa-
tion of the number of clusters of the input data, the constructed models still perform well
regardless of the information of K.
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Biau, G., Aurélie Fischer, Benjamin Guedj, James D. Malley, 2016. COBRA: a Combined
Regression Strategy. Journal of Multivariate Analysis 146, 18–28.

Bregman, L.M., 1967. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Computational Mathematical and Mathematical Physics 7, 200–217.

Cadet, O., Harper, C., Mougeot, M., 2005. Monitoring energy performance of compressors
with an innovative auto-adaptive approach., in: Instrumentation System and Automa-
tion -ISA- Chicago.

Fischer, A., 2010. Quantization and clustering with Bregman divergences. Journal of
Multivariate Analysis 101, 2207–2221.

Fischer, A., Mathilde Mougeot, 2019. Aggregation using input-output trade-off. Journal
of Statistical Planning and Inference 200, 1–19.

Has, S., Fischer, A., Mougeot, M., 2018. Consensual aggregation of clusters based on
Bregman divergences to improve predictive models. Technical Report. Université Paris-
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