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Résumé. Nous considérons le problème de comparaison de distributions entre deux
échantillons dans un modèle de Poisson vectoriel. Ce modèle est connu pour être asymp-
totiquement équivalent à celui des distributions multinomiales. Le but est de distinguer
si deux échantillons de données ont été tirés d’une même distribution inconnue ou si
leurs distributions respectives sont séparées en norme L1. Nous cherchons en particulier
à adapter la vitesse de test à la forme des distributions inconnues. Ainsi, nous travaillons
dans un cadre minimax local. A notre connaissance, nous fournissons la première vitesse
minimax locale de test pour la distance de separation à des facteurs logarithmiques près,
ainsi qu’un test qui l’atteint. En regard de la vitesse obtenue, le problème de test à deux
échantillons est subtantiellement plus difficile que celui de test d’adéquation d’un seul
échantillon à une loi connue dans de nombreux cas.

Mots-clés. Statistique mathématique.

Abstract. We consider the closeness testing (or two-sample testing) problem in the
Poisson vector model — which is known to be asymptotically equivalent to the model
of multinomial distributions. The goal is to distinguish whether two data samples are
drawn from the same unspecified distribution, or whether their respective distributions
are separated in L1-norm. In this paper, we focus on adapting the rate to the shape
of the underlying distributions, i.e. we consider a local minimax setting. We provide, to
the best of our knowledge, the first local minimax rate for the separation distance up to
logarithmic factors, together with a test that achieves it. In view of the rate, closeness
testing turns out to be substantially harder than the related one-sample testing problem
over a wide range of cases.
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The aim of this paper is to provide local minimax rates for the closeness testing (or
two-sample testing) problem in the Poisson vector model. A related problem that has
been thoroughly studied is the one-sample testing setting in the papers of Valiant and
Valiant (2017), and Balakrishnan and Wasserman (2017a). While the two-sample prob-
lem has also been studied for example by Chan et al. (2014), and Diakonikolas and
Kane (2016), as highlighted by Balakrishnan and Wasserman (2017b), we are not aware
of a complete study of the local minimax rates as carried out in the one-sample setting
in the papers of Valiant and Valiant (2017), and Balakrishnan and Wasserman (2017a).
In this paper, we bridge this gap. In the following, we provide a formal setting of the
question along with required notations.

1 Setting

For n > 0, define P = {p ∈ (R+)n,
∑

i pi = 1}. Let ‖.‖1 denote the L1-norm.
Let p, q ∈ (R+)n, and k ∈ N \ {0}. The data are obtained from the Poisson vector

setting:
Xi ∼ P(kpi), Yi ∼ P(kqi), (1)

where P is the Poisson distribution. In this paper, our goal is to test whether p and q are
the same based on the data (X, Y ), i.e. a closeness or two-sample testing problem. Note
that when p, q ∈ P, the Poisson vector setting is asymptotically equivalent to the setting
where one receives k data from two multinomial distributions p, q - see the paper of Valiant
and Valiant (2017). Therefore, our goal reduces to two-sample testing for multinomial
distributions.

Given π ∈ P, we define Uπ as the discrete multinomial distribution that takes value
{πi} with probability 1/n for each i ∈ {1, . . . , n}. Then, for a fixed ρ > 0 and fixed
unknown π ∈ P, the closeness testing problem that we consider in our paper is given by:

H
(1)
0 (π) : p = q, q ∼ U⊗nπ , versus H

(1)
1 (π, ρ) : ‖p−q‖1 ≥ ρ, q ∼ U⊗nπ , p ∈ (R+)n. (2)

With the definition in Equation (2), the vectors that are too close to q are removed from
the alternative hypothesis. We want to find the minimax optimal ρ such that a test with
non-trivial error exists, dependent on π. Intuitively, if π is, for example, the uniform
distribution, the testing problem is more difficult (and the minimax optimal separation
distance larger) than if π has just a few non-zero atoms. We want to capture this effect,
as done in the paper of Valiant and Valiant (2017) for one-sample testing.

Before describing our problem as well as the related literature in more details, we
define the generic notions of separation distance and minimax sample complexity. Given
a test ϕ whose inputs are k i.i.d. data points {(Xi, Yi)}i≤k distributed as in Equation (1),
the generic risk for a testing problem with hypotheses H0, H1 is defined as the sum of
type I and type II error probabilities:

R(H0, H1, ϕ; ρ, k) = sup
p,q∈H0

Pp,q(ϕ({(Xi, Yi)}i≤k) = 1) + sup
p,q∈H1(ρ)

Pp,q(ϕ({(Xi, Yi)}i≤k) = 0).
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Then, fixing some γ ∈ (0, 1), we say that a testing problem can be solved with error less
than γ, if we can construct a uniformly γ-consistent test, that is, if there exists ϕ such
that:

R(H0, H1, ϕ; ρ, k) ≤ γ.

Now ρ 7→ R(H0, H1, ϕ; ρ, k) is non-increasing, and greater or equal to one when ρ = 0.
Then, we define the separation distance for some fixed γ ∈ (0, 1):

ργ(H0, H1, ϕ; k) = inf{ρ > 0 : R(H0, H1, ϕ; ρ, k) ≤ γ}.

A good test ϕ is characterized by a small separation distance. So we define the minimax
separation distance, also known as local critical radius, as

ρ∗γ(H0, H1; k) = inf
ϕ
ργ(H0, H1, ϕ; k).

Besides, it is possible to consider either local minimax rates or global minimax rates.
Here, the local minimax separation distance would be written as ρ∗γ(H

(1)
0 (π), H

(1)
1 (π); k).

On the other hand, global minimax separation distance and sample complexity are weaker
compared to their local counterparts. They are written as supπ ρ

∗
γ(H

(1)
0 (π), H

(1)
1 (π); k) and

supπ k
∗
γ(H

(1)
0 (π), H

(1)
1 (π); ρ), respectively.

Additional notations In what follows, we also establish the following notations. For a
vector u ∈ Rn, let s be a permutation of {1, . . . , n} be such that us(1) ≥ us(2) ≥ . . . ≥ us(n).
We write u(.) := us(.). Set also Ju = minj≤n

{
j : u(j) ≤ 1

k

}
. We also write for γ > 0 and

for (ak)k, (bk)k two real sequences that ak = Oγ(bk) if there exist cγ > 0, Cγ > 0 that
depend only on γ and such that cγbk ≤ ak ≤ Cγbk for any k. We write Õk

γ for the same
concept but where the quantities cγ, Cγ can be dependent of a polylog(nk) to a power
that depends on γ only.

2 Literature review

The particular problem of goodness-of-fit testing, also known as identity testing, or one-
sample testing, consists in distinguishing whether the data are drawn from a specified
distribution π, versus a composite alternative separated from the null in L1-distance:

H
(3)
0 (π) : p = π, versus H

(3)
1 (π) : ‖p− π‖1 ≥ ρ, p ∈ P. (3)

The distributions considered will be restricted to certain classes of distributions. Indeed,
there exist no consistent test that can distinguish an arbitrary distribution π from the
alternatives separated in L1 (Barron, 1989; LeCam et al., 1973).

The global minimax rate is given by Paninski (2008) and tightened by Valiant and
Valiant (2017) for the class of multinomial distributions over a support of size n with the
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L1 distance for Problem (3). The global minimax separation distance for this problem

is supπ ρ
∗
γ(H

(3)
0 (π), H

(3)
1 (π); k) = Oγ(n

1/4/
√
k). This rate is obtained by taking π as a

uniform distribution, which is the most difficult distribution for one-sample testing.
From the observation that the rates might take values substantially different from

that of the worst case, the concept of minimaxity has been refined in recent lines of
research. One such refinement corresponds to local minimaxity, also known as instance-
optimality. Thus the rate depends on π. Valiant and Valiant (2017), and Balakrishnan
and Wasserman (2017) obtained the minimax rate in the local setting. We formulate

their lower bound in the following way in the present paper: ρ∗γ(H
(3)
0 (π), H

(3)
1 (π); k) ≥

Oγ

(
minm

[‖(π2/3
(i)

1{2≤i<m})i‖
3/4
1√

k
∨ 1

k
∨ ‖(π(i)1{i ≥ m})i‖1

])
.

On the other hand, in the closeness testing setting, the global minimax rate has been
identified by Chan et al. (2014), using the tools developed by Valiant (2011). It corre-

sponds in particular to an upper bound for Problem (2): supπ ρ
∗
γ(H

(3)
0 (π), H

(3)
1 (π); k) ≤

Oγ(
n1/2

k3/4
∨ n1/4

k1/2
). A very interesting message from Chan et al. (2014) is that there exists a

substantial difference between identity testing and closeness testing, and that the latter
is harder. It is interesting to note that while the uniform distribution is the most diffi-
cult distribution π to test in Problem (3), π in Problem (2) can be chosen in a different
appropriate way which worsens the rate.

Now, as explained in the review of Balakrishnan and Wasserman (2017b), the definition
of local minimaxity in closeness testing is more involved than in identity testing, and in
fact, is an interesting open problem that we focus on in this paper. The difficulty arises
from the fact that both distributions are unknown, although we would like the rates to
depend on them. Indeed, Problem (2) is composite-composite. Now, the existence and
the size of the gap for every π due to this adaptivity constraint are open questions. We
remind that Chan et al. (2014) disclose such a gap, but only in the worst case of π.

Diakonikolas and Kane (2016) construct a test which leads to an upper bound on the

local minimax separation rate: ρ∗γ(H
(3)
0 (π), H

(3)
1 (π); k) ≤ Õk

γ

(
‖1{π<1/k}‖1/21 ‖π21{π<1/k}‖1/41√

k
∨

‖π2/3‖3/41√
k

)
. Their bound matches the global minimax rate obtained by Chan et al. (2014)

for some choice of π and m. However no matching lower bound is provided in the local
case.
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3 Contributions

The following are the major contributions of this work:

• We provide a lower bound on the local minimax separation distance for Problem (2),

ρ∗γ(H
(1)
0 (π), H

(1)
1 (π); k) — see Equation (4) for u > 2.001.

• We propose a test that nearly reaches the obtained lower bound. This represents
an upper bound on ρ∗γ(H

(2)
0 (π), H

(2)
1 (π); k) and ρ∗γ(H

(1)
0 (π), H

(1)
1 (π); k) — see Equa-

tion (4) for u = 1. So the test is almost local minimax near-optimal for Problem (2)
which is related to closeness testing. An important feature of this test is that it
does not need π as a parameter although it adapts to it.

• We point out the similarities and differences in regimes with local minimax identity
testing.

More precisely we prove:

ρ∗γ(H
(1)
0 (π), H

(1)
1 (π); k) = Õk

γ

{
min
I≥Jπ

[√
I

k
∨
(√I

k
‖π2 exp(−ukπ)‖1/41

)
∨ ‖(π(i)1{i ≥ I})i‖1

]

∨

∥∥∥(π
2/3
(i) 1{i ≤ Jπ})i

∥∥∥3/4
1√

k
∨
√

1

k

}
,

(4)

where Jπ and π(.) are defined in Section 1, u = 2.001 for the lower bound and u = 1 for
the upper bound.
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