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Résumé. Nous proposons un estimateur d’une fonction de répartition en utilisant le

polynôme d’interpolation de Lagrange et les points de Tchebytchev. Nous étudions les

propriétés de cet estimateur et nous les comparons avec celle de l’estimateur d’une fonction

de répartition de Vitale. Nous montrons que notre estimateur domine celui de Vitale en

terme de risque. Ensuite, nous confirmons ces résultats théoriques par des simulations.
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Abstract. We consider an application of Lagrange polynomials and Tchebytchev’s

points for estimating a distribution function with support [−1, 1]. We study the proper-

ties of this estimator, as a competitor of Vitale’s distribution estimator defined by Bernstein

polynomials. We show that, this estimator dominates Vitale’s estimator in terms of risk.

Finally, we confirm our theoretical results through a simulation study.

Keywords. Distribution estimator, Lagrange polynomials, Tchebytchev’s points, Bern-

stein polynomials, Asymptotic properties.

1 Introduction

Let X1, . . . , Xn be a sequence of independent and identically distributed (i.i.d.) random

variables having a common unknown distribution function F with associated density f sup-

ported on [−1, 1]. Now, since we know that F is continuous, we consider the estimation of

F by using smooth functions rather than the empirical distribution function, which is not

continuous. There have been several methods for smooth estimation of density and distribu-

tion functions such as kernel methods. However, these methods have estimation problems at

the edges, when we have a random variable X with distribution F supported on a compact

interval. In order to solve this problem, there have been many methods such as the Bern-

stein polynomial distribution estimator proposed first by Vitale (1975) and then extended

by Babu et al. (2002). In this short communication, we suppose that f is supported on

[−1, 1], and we propose the following estimator of order m > 0 of the distribution F using

Lagrange polynomial, defined as

F̃n,m(x) =
m∑
i=1

F̂n(xi)Li(x), (1)
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where, for all i = 1 . . .m, xi = cos

(
(2i− 1)π

2m

)
are Tchebytchev’s points,

Li(x) =
m∏

j=1,j 6=i

x− xj
xi − xj

is the Lagrange polynomial and F̂n denotes the empirical distribution

function obtained from a random sample of size n. We assume that m = mn (depends on n).

The aim of this short communication is to study the properties of the distribution estimator

(1), as a competitor for Vitale’s distribution estimator (1975) defined by

F n,ν(x) =
ν∑
k=0

F̂n

(
k

ν

)
bk(ν, x), (2)

with F̂n is the empirical distribution function and bk(ν, x) = Ck
νx

k(1−x)ν−k is the Bernstein

polynomial of order ν > 0. We assume that ν = νn (depends on n).

2 Assumptions and notations

We define the following class of regularly varying sequences.

Definition 1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence. We say that

(vn) ∈ GS(γ) if

lim
n→+∞

n

[
1− vn−1

vn

]
= γ.

This condition was introduced by Galambos and Seneta (1973) to define regularly varying

sequences.

To study the asymptotic behaviours of the estimator (1) inside the interval [−1, 1], we

make the following assumptions:

(A1) F is of class C2 on [−1, 1].

(A2) (νn) ∈ GS(a), (mn) ∈ GS(a), a ∈ (0, 1).

The assumption (A1) is used in the theoretical part to calculate the bias and the variance

of F̃n,m. The assumption (A2) is used in the numerical studies to obtain the optimal choices

of the orders (mn) and (νn) which minimize the risk. Throughout this communication, we

will use the following notations for m ≥ 1, i = 1 . . .m and x ∈ [−1, 1]:

θi =
(2i− 1)π

2m
and xi = cos (θi): Tchebytchev’s points,

Tm(x) =
m∏
i=1

(x− xi): Tchebytchev polynomial, Jm(x) =
m∑
k=1

| xk − x | L2
k(x),

Li(x) =
m∏

j=1,j 6=i

x− xj
xi − xj

: Lagrange polynomial, σ2(x) = F (x)(1− F (x),

Sm(x) =
m∑
k=1

L2
k(x), Pm(x) =

∑∑
0≤k<l≤m

(xk − x)Lk(x)Ll(x), Am(x) =
m∑
i=1

F (xi)Li(x).
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3 Main results

Our first result is the following proposition which gives the bias and the variance of F̃n,m.

Proposition 1 (Bias and variance of F̃n,m). Under assumption (A1), we have for x ∈
[−1, 1] that

Bias(F̃n,m) = E(F̃n,m)− F (x) =
π

2
Tm(x)m−2f(x) + o(m−4), (3)

V ar(F̃n,m) = n−1σ2(x) + 2f(x)Pm(x)n−1 + n−1O(Jm(x)) +O(n−1m−4). (4)

Notice that the previous result implies that the bias of F̃n,m is O(m−4) which is smaller

than the bias of the estimator obtained using Bernstein polynomial having a bias as O(m−1).

The following proposition shows that F̃n,m is strongly consistent.

Proposition 2 (Uniform convergence of F̃n,m). Under assumption (A1), if n,m → ∞,

then
∥∥∥F̃n,m − F∥∥∥ → 0 almost surely (a.s.), where ‖G‖ = sup

x∈[−1,1]
|G(x)| for any bounded

function G on [−1, 1].

Finally, the following proposition shows the asymptotic normality of the estimator (1).

Proposition 3 (Asymptotic normality of F̃n,m ). Assume (A1) holds and m,n → ∞.

For x ∈ (−1, 1), we have that

n1/2
(
F̃n,m(x)− Am(x)

)
L→ N (0, σ2(x)). (5)

4 Numerical studies

In this section, we show that the estimator using the Lagrange polynomial defined in equation

(1) outperformed the estimator using the Bernstein polynomial defined in equation (2). In

our simulation study, we consider three sample sizes, n = 30, n = 50, n = 100 and the

following two distribution functions:

a) the beta distribution B(2, 2).

b) the exponential distribution E(5).

In the framework of the nonparametric estimators, the smoothing parameter selection

methods studied in the literature can be divided into three broad classes: the cross-validation

techniques, the plug-in methods and the bootstrap idea. In this section, we assume that the

assumption (A2)is satisfied. We use the cross-validation procedure to select respectively

the smoothing order (mn) of the proposed estimator (1) and the order (νn) of the Vitale’s

estimator (2). Sarda (1993) proposed to use

CV (m) =
n∑
i=1

(
F̂n(xi)− F−i(xi)

)2
.

3



Figure 1: Qualitative comparison between the estimator F̃n,m defined in (2) and the proposed

distribution estimator (1), for 500 samples of size 50 for the exponential distribution E(5).

For each distribution function and sample size n, we compute the Integrated Squared

Error (ISE) of the estimator over N = 500 trials,

ISE[ĝ] =

∫ 1

0

(ĝ(x)− F (x))2 dx,

where ĝ is an estimator of the distribution F .
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Figure 2: Qualitative comparison between the estimator F̃n,m defined in (2) and the proposed

distribution estimator (1), for 500 samples of size 100 for the exponential distribution E(5).

Table 1: ISE for N = 500 trials of the Vitale’s estimator and the proposed estimator F̃n,m

laws n Proposed estimator Vitale’s estimator

30 0.00271338 0.00471605

(a) 50 0.00127222 0.00466732

100 0.00059276 0.00341529

30 0.00403700 0.04706539

(b) 50 0.00109249 0.04232919

100 4.95561e−5 0.01800240

From figures 1, 2 and table 1, we conclude that

• In all the considered distributions, by choosing the appropriate (mn), the ISE of the

distribution estimator (1) is smaller than that of Vitale’s estimator (2).

• The ISE decreases as the sample size increases.
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5 Conclusion

In this communication, we propose an estimator of a distribution function using Lagrange

polynomials and Tchebytchev’s points. We study its asymptotic behaviours. The proposed

estimator is asymptotically normal. Then, we compare our proposed estimator to the Vi-

tale’s distribution estimator through a simulation study. For all the considered cases, the

ISE of our proposed estimator (1) is smaller than that of Vitale’s estimator (2). In con-

clusion, using the proposed estimator F̃n,m we can obtain better results than those given by

Vitale’s distribution estimator. Hence, we plan to make an extension of the current work

by considering a recursive version and to compare the obtained estimators to the one given

in Slaoui (2014b) and Jmaei et al. (2017). We plan also to consider the estimation of a

density function in a recursive framework (see Slaoui (2014a)) and then the estimation of

a regression function in a recursive framework by using Lagrange polynomials (see Slaoui

(2015, 2016)).
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