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Résumé. Dans la recherche en santé et en sciences sociales, les études observationnelles
prospectives sont fréquentes, relativement faciles à mettre en place (contrairement aux études
expérimentales d’essais randomisés qui sont parfois même impossible à réaliser) et peuvent per-
mettre différents types d’analyses postérieures telles que des inférences causales. L’estimation de
l’effet moyen du traitement (en anglais average treatment effect, ATE), par exemple, est possible
grâce à l’utilisation de scores de propension qui permettent de corriger les biais d’affectation du
traitement dus à de la confusion, i.e. la présence de facteurs liés à la fois à l’affectation du traite-
ment et à la variable d’intérêt. Cependant, un problème majeur avec des grandes études obser-
vationnelles est leur complexité et leur caractère souvent incomplet : les covariables sont souvent
prises à différents niveaux et stades, elles peuvent être hétérogènes – catégorielles, discrètes,
continues – et contiennent presque inévitablement des valeurs manquantes. Le problème des
valeurs manquantes dans l’inférence causale a longtemps été ignoré et n’a regagné l’attention
que récemment en raison des impacts non négligeables en termes de puissance et de biais induits
par des analyses de cas complètes et des modèles d’imputation mal spécifiés. Nous discutons
des conditions dans lesquelles une inférence causale peut être possible malgré la présence de
valeurs manquantes dans les facteurs confondants, nous comparons différentes méthodes pro-
posées dans le passé pour traiter les valeurs confondantes manquantes et proposons deux esti-
mateurs ATE double robustes qui rendent directement compte des valeurs manquantes. Nous
évaluons la performance de nos estimateurs sur une base de données prospective considérable
contenant des informations détaillées sur environ 20 000 patients poly-traumatisés graves en
France. À l’aide des estimateurs d’ATE proposés et de cette base de données, nous étudions
l’effet sur la mortalité de l’administration de l’acide tranexamique aux patients présentant un
choc hémorragique.

Mots-clés. données manquantes, inférence causale, réponses potentielles, données obser-
vationnelles, estimation du score de propension, prise en charge de poly-traumatisés graves

Abstract. In healthcare and social sciences research, prospective observational studies are
frequent, relatively easily put in place (compared to experimental randomized trial studies for
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instance) and can allow for different kinds of posterior analyses such as causal inferences. Av-
erage treatment effect (ATE) estimation for instance is possible through the use of propensity
scores which allow to correct for treatment assignment biases in the non-randomized study
design. However, a major caveat of large observational studies is their complexity and incom-
pleteness: the covariates are often taken at different levels and stages, they can be heterogeneous
– categorical, discrete, continuous – and almost inevitably contain missing values. The prob-
lem of missing values in causal inference has long been ignored and only recently gained some
attention due to the non-negligible impacts in terms of power and bias induced by complete
case analyses and misspecified imputation models. We discuss conditions under which causal
inference can be possible despite missing confounder values, we compare different methods
proposed in the past to deal with missing confounder values and propose two doubly robust
ATE estimators which directly account for the missing values. We assess the performance of
our estimators on a large prospective database containing detailed information about nearly
20,000 severely traumatized patients in France. Using the proposed ATE estimators and this
database we study the effect on mortality of tranexamic acid administration to patients with
hemorrhagic shock in the context of critical care management.

Keywords. missing data, causal inference, potential outcomes, observational data, propen-
sity score estimation, major trauma, critical care management

1 Context and motivation

1.1 Hemorrhagic shock in critical care management

Our work is motivated by a prospective observational database, the Traumabase R©, that cur-
rently includes around 20,000 major trauma patients with 244 pre-hospital and hospital mea-
surements. This data is heterogeneous, being composed of both quantitative and categorical
variables and it contains an important fraction of missing values in many of these variables.
Major trauma is defined as any injury that potentially causes prolonged disability or death and
it is a public health challenge and a major source of mortality and handicap around the world
(Hay et al., 2017). In this context we are interested in estimating the effect of tranexamic acid,
an antifibrinolytic agent that limits excessive bleeding, on the in-ICU mortality among patients
with hemorrhagic shock, based on the observational database.

As in almost all areas of empirical research, the Traumabase also presents missing data.
There are various reasons why missing data may occur, including non-response, unavailability
of measurements, and lost data. Straightforward application of causal inference methods in the
presence of missing data is not possible and naive approaches such as complete-case analysis
are known to heavily bias the treatment effect estimations (Bartlett et al., 2015).
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1.2 Causal inference

Causal inference questions arise in many domains (socio-economy, politics, psychology, medicine,
etc.) and are of the form “given the circumstances, what action should be taken to achieve
a certain goal”. The notion of causal inference has not been addressed until the middle of
the last century and has often been confounded with the notion of causality, a concept which
cannot be of interest in statistics (Hernán and Robins, 2019). The causal inference formalism
allows one to study questions like the one given previously as a common estimation problem. It
is commonly admitted that the gold standard for treatment effect estimation is a randomized
controlled trial (RCT) that allows to estimate the average effect of a treatment, an intervention
or a policy on a well defined population of interest. For instance, in pharmaceutical and medical
research RCTs are compulsory for the authorisation of new drugs or other treatments. However
RCTs are generally very expensive in terms of time and financial costs. Furthermore in some
areas such as economics or political sciences, it is often impossible to implement an RCT to
assess the effectiveness of a given intervention or policy, for instance the impact of a minimum
wage policy on employment. But, as identified as the fundamental problem of causal inference
by (Holland, 1986), we want to estimate something that we never observe since we never see
the counterfactuals for a same individual at a same time (induced by different treatments or
policies).

Despite this fundamental problem, there exist a multiplicity of well studied methods to
efficiently and consistently estimate causal effects in different scenarios. One scenario that has
only rarely been addressed rigorously in the past is the case of missing confounder values. In
this work we propose and compare several methods to handle missing values in the confounders,
i.e. covariates that are associated both with treatment assignment and outcome, we discuss
the underlying assumptions of these methods and assess them in simulations with the goal to
apply these methods to answer the medical question in the context of critical care management
introduced above.

1.3 Definitions and assumptions

In light of our goal of performing causal analyses, we consider the potential outcomes framework
from the Rubin causal model (Rubin, 1974) and define potential outcomes Yi(t) for observation
i and treatment t ∈ Span(T ). In case of binary treatment assignment, for instance treatment
vs. control or treatment A vs. treatment B, this leads to two potential outcomes, in some cases
also referred to as counterfactuals, Yi(1) and Yi(0). The observed outcome for unit i is then
defined as Yi , TiYi(1) + (1− Ti)Yi(0). In what follows we consider the binary treatment case
and refer to individuals having Ti = 1 as treated and to those having Ti = 0 as control.

To assess the effect of a treatment we are interested in the individual treatment effect, which
is defined for unit i as τi , Yi(1)−Yi(0) but which, by definition, is never observed. Faced with
this impossibility to observe the quantity of interest τi, other treatment effect quantities are
estimated averages of τi over different subsets of the original sample, for instance the average
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treatment effect, ATE, is defined as

τ , E[Yi(1)− Yi(0)] = E[τi]. (1)

The average treatment effect corresponds to the effect of switching every individual from one
group to the other.

The ignorability or unconfoundedness assumption states that all confounding factors are
measured, i.e. conditionally on covariates Xi ∈ X , the treatment assignment is independent of
the potential outcomes. Formally this means

{Yi(1), Yi(0)} ⊥⊥ Ti |Xi for all i. (2)

Under this assumption we can hope to identify E[Yi(t)], t ∈ {0, 1}, from the data despite
the inherent problem of missing values due to counterfactuals since E[Yi(t) |Ti = t,Xi] =
E[Yi(t) |Xi], t ∈ {0, 1}. We also need to assume the Stable Unit Treatment Value Assumption
(SUTVA) (Rubin, 1978). Finally we assume probabilistic treatment assignment, i.e. if we define
the propensity score e(x) , P(Ti = 1 |Xi = x) (Rosenbaum and Rubin, 1983), then we assume
0 < e(x) < 1, for all x ∈ X . A well known and important result is the balancing property
of the propensity score, that is if condition (2) holds then we can control for e(Xi) in order to
balance the covariates distributions.

1.4 Consistent treatment effect estimators in the complete case

We distinguish two cases of data settings: experimental data from an RCT where the covariate
distributions (before treatment) between treated and control are identical and we know the law
of the treatment assignment random variable. In this case one can consistently estimate τ by
a difference in means estimator:

τ̂DM ,
1

|{i : Ti = 1}|
∑

i : Ti=1

Yi −
1

|{i : Ti = 0}|
∑

i : Ti=0

Yi. (3)

The second setting is conceptually different and is referred to as observational data: treated
and control groups do not necessarily have the same distribution (before treatment) since the
treatment assignment is not independent of the covariates and the potential outcomes. As-
sumption (2) allows however to overcome this issue by adjusting for the nonrandom treatment
assignment and balancing the covariates distributions. The emulation of an RCT from obser-
vational data can be approached in different ways (Imbens, 2004): (1) matching or stratifying
the observations on their pre-treatment covariates, (2) matching or stratifying the observations
on their propensity score, (3) inverse propensity weighting.

Matching and stratification can be considered as a nonparametric data pre-processing and
allows to balance the observations of the two groups, provided that the covariate space is small
enough and that there are sufficiently many observations in both groups. Inverse propensity
weighting re-weights every observation by the inverse of its propensity score in order to balance
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the distributions in the two groups, leading to a difference in weighted means estimator τ̂IPW .
The quality of this reweighting depends solely on the quality of the propensity score estimation
and in order to reduce the sensitivity of the corresponding treatment effect estimator τ̂IPW

to model misspecification, other estimators have been proposed that additionally model the
outcome Y and combine the weighting and outcome estimates (Robins et al., 1994):

τ̂DR ,
1

n

n∑
i=1

µ̂1(Xi)− µ̂0(Xi) + Ti
Yi − µ̂1(Xi)

ê(Xi)
− (1− Ti)

Yi − µ̂0(Xi)

1− ê(Xi)
. (4)

Such estimators belong to the class of doubly robust treatment effect estimators and have the
appealing property of being consistent as long as at least one of the two estimations, the
propensity scores or the outcomes, is consistent.

2 Extension to the incomplete confounders case

2.1 Additional assumptions

In order to be able to infer treatment effects, we need to adjust, or rather augment, the ini-
tial unconfoundedness assumption such that treatment assignment is unconfounded given only
the observed covariates and the missingness pattern. (Rosenbaum and Rubin, 1984) sketch a
generalized propensity score analysis which uses a missingness pattern approach for estimating
treatment effects. They define the generalized propensity score e∗ by conditioning treatment as-
signment T on the covariates X ∈ X (wheredim(X ) = p) and the response pattern R ∈ {0, 1}p
which is defined as Rj , 1{Xj is observed}. According to this response pattern we can express

X as X = (Xobs, Xmis) where Xobs , {Xj : Rj = 1}. With these notations the generalized
propensity score can be written as

e∗(Xobs, R) , P(T = 1 |Xobs, R) (5)

This definition allows to balance treatment and control groups in the case of missing values
as it is shown in (Rosenbaum and Rubin, 1984), assuming that the treatment assignment is
unconfounded given Xobs and R, i.e. {Yi(1), Yi(0)} ⊥⊥ Ti |Xobs

i , Ri. Note that the generalized
propensity score only allows to balance the observed covariates, i.e. for observations with the
same response pattern, balance is achieved on the observed covariates but not necessarily on
the Xmis.

We develop our method building on remarks of (Blake et al., 2019) who discuss this ap-
proach, the missingness pattern approach (MPA), and the missing indicator approach as a
special case, and the plausibility of their underlying assumptions.

unconfoundedness∗: T ⊥⊥ Y (t) | (Xobs, Xmis), R for t ∈ {0, 1} (6)

CIT: T ⊥⊥ Xmis |Xobs, R (7)

CIO: Y (t) ⊥⊥ Xmis |Xobs, R for t ∈ {0, 1}, (8)
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which are missingness unconfoundedness, Conditionally Independent Treatment and Condi-
tionally Independent Outcomes, respectively. These assumptions describe the relationships
between missing confounder values and the treatment or outcome. If either the CIT or CIO
assumption holds, X does not confound the relationship between treatment and outcome when
it is missing.

2.2 Existing estimators

Several approaches to treatment effect estimation with incomplete confounders have been pro-
posed in the last few decades: multiple imputation using all observed information, including
treatment assignment and outcome (Leyrat et al., 2019), inverse propensity weighting with
propensity scores estimated using the missingness pattern approach (Rosenbaum and Rubin,
1984; D’Agostino Jr and Rubin, 2000), under a latent confounders assumption a matrix factor-
ization pre-processing recovering the latent confounders from the incomplete covariates (Kallus
et al., 2018).

2.3 Doubly robust estimators

Building on two recent results of consistent predictions in the presence of missing values (Jiang
et al., 2018; Josse et al., 2019), we propose two doubly robust treatment effect estimators
that consistently estimate e(·) (or e∗(·)) and {µt(·)}t∈{0,1} in different ways, one is based on
expectation maximization (Dempster et al., 1977) that fits a logistic and a linear model on
the incomplete data the other one uses random trees and a missing incorporated in attributes
approach, MIA (Twala et al., 2008). The former is valid under normality assumptions and the
MAR missingness mechanism (Little and Rubin, 2002) and allows to efficiently estimate a logis-
tic regression using a stochastic approximation expectation maximization (SAEM) algorithm.
The latter is a nonparametric approach using random trees that allow to incorporate missing
values information, i.e. an implicit encoding of the response pattern R. This is due to the
random trees’ ability to handle the half-discrete nature of variables with missing values. This
second estimator is more flexible in the sense that it does not build on any assumption about
the missingness mechanism or a model specification of the propensity score and the outcome
but only on the assumptions discussed earlier.

2.4 Simulation results

We assess the performance of the previously introduced treatment effect estimators in different
scenarios, modifying the confounders’ correlation structure and the missingness mechanism.
We follow the strategy of (Kang et al., 2007) for assessing the estimators’ sensitivity to model
misspecification, both for propensity and outcome models. Results for strongly correlated
confounders are similar to those for weakly correlated confounders. We therefore only report
the results for the former. The same holds for results for MAR and MCAR and we only report
results for the MAR scenario. The results reported in Figure 1 suggest that under the above
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assumptions, the different τ̂IPW and τ̂DR estimators (using either SAEM or MIA) have the
same sensitivity to model misspecification as in the complete case of (Kang et al., 2007), i.e.
τ̂IPW is consistent if and only if ê(·) is consistent and τ̂DR is consistent if ê(·) or {µ̂t(·)}t∈{0,1} is
consistent. However, if both CIT and CIO are violated, none of the proposed methods achieves
unbiased results.
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Figure 1: Strongly correlated confounders, MAR mechanism. mice: imputation and standard
complete case estimators on imputed data; mia: random forest propensity and outcome estima-
tion with MIA; saem: EM estimation for propensity and outcome models; (red: τ̂DR; turquoise:
τ̂IPW ; black solid line: true treatment effect τ ; 200 simulations for sample sizes n ∈ {100, 500}).

3 Discussion and perspectives

Our empirical study corroborates the necessity of the CIT/CIO assumptions and our conjec-
ture of doubly robust treatment effect estimation with incomplete confounders under these
assumptions.

After having theoretically proven the double robustness of our proposed estimators we will
apply them on the Traumabase to answer the medical question raised in the introduction.

We conjecture that the CIT/CIO assumptions can be made implicit by assuming a latent
confounder model. More specifically, instead of assuming unconfoundedness given only the
observed Xobs and R, we assume unconfoundedness given a set of latent confounders, similar
to the setting of (Kallus et al., 2018). Once this relationship established, we claim that we
do not need recovering these latent confounders since we demonstrated the consistency of our
proposed estimators under the CIT/CIO assumptions.
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