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Abstract. In this paper we work on the estimation of a regression function that belongs to a poly-
nomial decay reproducing kernel Hilbert space (RKHS). We describe spectral filter framework for our
estimator that allows us to deal with several iterative algorithms: gradient descent, Tikhonov regulariza-
tion, etc. The main goal of the paper is to propose a new early stopping rule by introducing smoothing
parameter for empirical risk of the estimator in order to improve the previous results [1] on discrepancy
principle. Theoretical justifications as well as simulations experiments for the proposed rule are provided.
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Résumé. Dans ce travail, nous présentons, dans un cadre général, l’estimation de la fonction de
régression lorsqu’elle appartient à un RKHS. Les propriétés de plusieurs estimateurs sont analysées à
travers des algorithmes itératifs comme la descente de gradient et la régularisation de type Tikhonov.
L’objectif principal de notre analyse est de proposer une nouvelle règle d’arrêt prématuré des algorithmes
basée sur l’introduction d’un paramètre de lissage dans la définition du risque empirique. Nous illustrons
l’efficacité de notre approche et présentons les résultats d’une étude de simulation.
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1 Introduction

In supervised learning, given a sample of pairs of inputs and outputs, the goal is to estimate a regression
function in the framework of empirical risk minimization or Tikhonov regularization. Usually properties
of the regression function is not known, therefore one can apply different nonparametric techniques to
relax this difficulty. Kernel methods [2] are one of the most widely used approaches to learning.

Early stopping rule (ESR) is an algorithmic approach to the regularization of an iterative algorithm
such as (stochastic) gradient descent [3], boosting algorithms [4] or EM algorithm [5]. It is based on an
idea of stopping iterative process according to a special criterion in order to reach the best statistical
precision. ESR has a fairly long history and was first introduced for neural networks [6].

There have been three principal strategies for designing an ESR for a regression function learning.
The first one is based on expanding the value of the risk error into Taylor series and optimizing each term
of the series. The second one is decomposing the risk error into bias and variance parts and to obtain their
high probability upper bounds. At the end, the stopping rule will be defined according to a criterion
of the intersection of these two bounds. Several results have been derived regarding this strategy to
quantify the ESR performance in the reproducing kernel Hilbert space (RKHS). For example, [7] derived
a stopping rule tw when the regression function belongs to RKHS H. If one stops the learning process at
this iteration, the minimax optimal rate for the risk error is achieved for a wide class of functions. The
main deficiency of this method is that it requires an accurate upper bound of the regression function in
H. The third and the recent one strategy consists of designing an ESR by observing empirical risk and
building a threshold for stopping appropriately an iterative process (so-called discrepancy principle). This
approach was developed initially by [1] where authors analyzed the behaviour of discrepancy principle
for spectral filter algorithms in linear regression model that was further expanded to kernel framework.
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In the present work we keep the same spectral framework as [1] by considering gradient descent
and kernel ridge regression (or Tikhonov regularization) algorithms. More precisely, we focus on the
nonlinear regression function estimation using polynomial decay reproducing decay kernels. We introduce
a smoothing parameter for empirical risk, modify previously designed discrepancy principle rule and prove
optimality results in terms of L2-error and as an oracle inequality for a regression function estimator
stopped at new rule.

The organization of the paper is as follows. Section 2 introduces a statistical framework and the
spectral filter estimator. Section 3 describes the main theoretical results achieved. Section 4 shows the
behaviour of the derived ESR in simulations.

2 Statistical framework

Let us assume we have a sample zi = (xi, yi) ∼ P, i = 1, ..., n with xi ∈ X and yi ∈ R and we consider
the usual regression model:

Yi = f∗(xi) + σεi, i = 1, ..., n,

where εi are i.i.d. N (0, 1) random variables and σ = const is known. There is a large body of work on
estimating the noise variance σ in non-parametric regression. In other words

Y = F ∗ + σε ∈ Rn

Introducing now (µ̂1, . . . , µ̂n) and (u1, . . . , un) as the eigenvalues and eigenvectors of normalized Gram
matrix K = K(xi, xj)/n respectively, where K(·, ·) denotes the reproducing kernel associated with the
reproducing kernel Hilbert space H [8]. Let us further assume

µ̂1 ≥ µ̂2 ≥ . . . ≥ µ̂r > 0 = µ̂r+1 = µ̂r+2 = . . . = µ̂n.

We assume that f∗ ∈ H therefore we would like to use an iterative algorithm to solve

inf
f∈H
{ 1

n

n∑
i=1

(yi − f(Xi))
2} = min

θ∈Rn
‖Y −Kθ‖2n, (1)

by the representer theorem. Then projecting F t = Kθt, F ∗ , Y and ε onto the space spanned by
(u1, . . . , ur), the r first eigenvectors of K, gives us

Zi = G∗i + σε̃i, i = 1, . . . , r

Here we used the fact that G∗i = 〈F ∗, ui〉 = 0 when i > r since f∗ ∈ H.
A non-negative function γ(t) ∈ Rr is called a spectral filter if it is a non-decreasing function of t (in

each of its coordinates), γ
(0)
i = 0 and lim

t→∞
γ
(t)
i = 1. Several iterative algorithms could be expressed in

terms of spectral filter as

(Gt)i =

{
γ
(t)
i Zi, if i = 1, . . . , r

0, if i = r + 1, . . . , n
.

Two examples that we study in this paper:

• Gradient descent (GD) with a constant step-size α: γ
(t)
i = 1− (1− αµ̂i)t

• (Iterative) kernel ridge regression (KRR) with a parameter α: γ
(t)
i = µ̂i

µ̂i+λt
, where λt = 1/(αt) for

linear parameterization case or λt = 1/(eαt − 1) for exponential parameterization case.
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3 Main results

3.1 Previous stopping rule definition

Considering the risk of F t we can define its bias and variance:

Eε||F t − F ∗||2n = ||EεF t − F ∗||2n + Eε||F t − EεFt||2n = B2
t + EεVt,

B2
t =

1

n

r∑
i=1

(1− γ(t)i )2(G∗i )
2, EεVt =

σ2

n

r∑
i=1

(γ
(t)
i )2

Bias is a non-increasing convex functions converging to zero and variance is a non-decreasing function

converging to rσ2

n . Ideally we would like to be able to minimize the risk as a function of t. Actually, this
is not possible because it depends on the unknown distribution. Therefore we define empirical risk, a
non-increasing convex function converging to zero.

Rt =
1

n
||F t − Y ||22 =

1

n

r∑
i=1

(1− γ(t)i )2Z2
i

A stopping rule that was designed in [1] consists of properly setting a threshold for empirical risk:

τ = inf{t ≥ 0 : Rt ≤
rσ2

n
} (2)

The following theorem describes the performance of τ compared to the global optimum performance:

Theorem 3.1 For gradient descent and kernel ridge regression filters there exist constants C1 ≥ 2 and
C2 > 0:

Eε||F τ − F ∗||2n ≤ C1 inf
t≥0

[
Eε||F t − F ∗||2n

]
+ C2

√
r

n

Here constants C1 and C2 do not depend on the number of samples n. This theorem shows that if our
kernel is a finite-rank one then the remainder term is of order O( 1

n ) and it is converging faster that the
optimal value of the risk error. However if we assume that rank of the kernel depends on the number
of samples, e.g. for Sobolev kernel r = n, then the remainder term of the oracle-type inequality has a
slow convergence rate (for Sobolev kernel O( 1√

n
)). Moreover, it appeared that τ , since it is a random

quantity itself, has a large variance. Therefore we suggest to use a smoothed version of bias/variance and
empirical risk by means of the eigenvalues of Gram matrix and a smoothing parameter θ ∈ [0, 1]:

Bθ,t =
1

n

r∑
i=1

µ̂θi (1− γ
(t)
i )2(G∗i )

2, EεVθ,t =
σ2

n

r∑
i=1

µ̂θi (γ
(t)
i )2,

Rθ,t =
1

n

r∑
i=1

µ̂θi (1− γ
(t)
i )2Z2

i , θ ∈ [0, 1]

3.2 Polynomial decay kernels

Let us at the beginning derive a result that introduces minimax optimal rate for a stopping rule that has
O( 1

n ) threshold for smoothed empirical risk with polynomial decay kernels.

Theorem 3.2 For any γ > 0 and n ≥ 16 let us make the following assumptions:
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• sup
x∈X

K(x, x) ≤MK

• |Y | ≤M a.s.

• Let us define the kernel integral operator

B : L2(P)→ L2(P), g 7→
∫

K(·, x)g(x)dP (x)

There exists w ∈ L2(P) such that f∗ = Bν−
1
2w with ‖w‖L2(P) ≤M

−ν
K ρ and ν ≥ 1

2

• Given two parameters s ∈ (0, 1) and D ≥ 1 we consider the polynomial effective dimensionality

N (λ) = Tr(B(B + λI)−1) ≤ D2(M−1K λ)−s

This notion was first introduced by [9] in a learning context, and used in a number of works since.
This assumption is tightly connected with the decay of the eigenvalues of the kernel integral operator
B: if the eigenvalues of the kernel integral operator has a decay µi � i−

1
s than the condition on the

effective dimensionality holds true with a parameter s.

• If we define an ESR t̂o = inf{t > 0 : Rθ,t ≤ C(ρ,D,M,MK , ν, θ, γ) n
2ν+θ
2ν+s } for gradient descent and

kernel ridge regression filters and we take the smoothing parameter θ = s then

‖f t̂o − f∗‖L2(P) . n−
ν

2ν+s with probability 1− γ

The rate achieved for the L2-error in the theorem is proved to be minimax-optimal(see e.g. [10])

The theorem shows that, if we choose the smoothing parameter θ = s, our strategy t̂o will be optimal
in minimax sense. Since in practice we do not have an access to the eigenvalues of the kernel integral
operator, we propose to use the inverse decay of the eigenvalues of Gram matrix as an estimation of the
optimal parameter θ. Since in the definition of t̂o the constant C(ρ,D,M,MK , ν, θ, γ) is non-computable
in practice we propose to consider the following stopping rule t̂ where the threshold for smoothed empirical

risk is of order O(
tr(Kθ

n)
n ) = O( logn

n ). This stopping rule aims to estimate an iteration of the intersection
of smoothed bias and smoothed variance.

t̂ = inf{t > 0 : Rθ,t ≤
σ2

n

r∑
i=1

µ̂i
θ
[
(γ

(t)
i )2 + (1− γ(t)i )2

]
} (3)

Theorem 3.3 For gradient descent and kernel ridge regression filters there exist constants Ĉ1 ≥ 4 and
Ĉ2 > 0 such that

Eε‖F t̂ − F ∗‖2n ≤ Ĉ1 inf
t>0

[
Eε‖F t − F ∗‖2n

]
+
Ĉ2

n

Here constants Ĉ1 and Ĉ2 do not depend on the number of samples n so, for this oracle-type inequality,
we achieve O( 1

n ) rate for the remainder term in the right hand side of the inequality.

4 Simulations

We perform simulations experiments on a simple problem: for the regression model yi = f∗(xi)+σεi, i =
1, ..., n where εi ∼ N (0, 1) and σ = 0.2 we use fixed design setting xi = i/n. We implement gradient
descent and kernel ridge regression algorithms for fixed step-size and fixed parameter α. We choose the
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regression function to be either a smooth function f∗(x) = −0.5 sin
[
3(x− 2)

]
(SF) or a piecewise linear

function f∗(x) = |x− 0.5| − 0.5 (WF) and polynomial decay Sobolev kernel K(x1, x2) = min(x1, x2). We
would like to compare our stopping rule to the previous discrepancy principle stopping rule τ described in
(2), to another stopping rule tw [7], that provides state-of-the-art results for gradient descent and kernel
ridge regression algorithms and is based on upper bounding bias and variance with high probabilities, as
well as to the oracle method, that requires knowledge of f∗, therefore non-computable in practice.

tor = inf
t≥0

[
Eε‖F t − F ∗‖2n

]
(4)
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Figure 1: We choose Sobolev kernel, noise level σ = 0.2 and apply GD and KRR (linear parameterization)
filters with α = 0.5 for (SF) and (WF) regression functions. Smoothing parameter θ is chosen to be equal
to inverse estimation of the decay of the eigenvalues of Gram matrix. Each curve for both of two graphs
corresponds to the mean-squared error of a spectral filter estimator, stopped at tor, τ and t̂, averaging
over 100 independent trials.
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Figure 2: We choose Sobolev kernel, noise level σ = 0.2 and apply KRR (linear parameterization)
and KRR (exponential parameterization) filters with α = 0.5 for (SF) and (WF) regression functions.
Smoothing parameter θ is chosen to be equal to inverse estimation of the decay of the eigenvalues of
Gram matrix. Each curve for both of two graphs corresponds to the mean-squared error of a spectral
filter estimator, stopped at tor, tw and t̂, averaging over 100 independent trials.
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Figure 1 compares the resulting mean-squared errors of our stopping rule (3), the previous discrepancy
principle rule (2) and the oracle stopping rule (4). The new proposed rule exhibits better performance
than (2) for all sample sizes. Figure 2 compares the resulting mean-squared errors of our stopping rule
(3), the state-of-the-art stopping rule tw [7] and the oracle stopping rule (4). The new proposed rule
exhibits better performance than tw for a sample size n < 300 for KRR (linear parameterization) filter
and for a sample size n < 800 for KRR (exponential parameterization) filter. Nevertheless, we observe the
same asymptotic behaviour of tw and t̂. Since the rule tw is proved to be minimax optimal in a functional
space generated by Sobolev kernels, we can conclude that t̂ recovers the same rate in simulations.

5 Conclusion

In this paper we described spectral filter algorithms (gradient descent, Tikhonov regularization) for non-
parametric regression function estimation in RKHS. We proposed a new early stopping rule t̂ for these
algorithms. After that we proved an optimal result in L2-error and an oracle-type inequality for the
developed rule. At the end of the paper we showed the performance of t̂ in simulations. The main
deficiency of our strategy is that the construction of t̂ is based on the assumption that the regression
function belongs to a known RKHS and that the results were derived only for polynomial decay kernels.
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