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Résumé. On considère le problème de l’estimation non paramétrique d’une densité
circulaire à partir de données contaminées par des erreurs angulaires. On propose pour la
tâche un estimateur à noyau dont les poids rappellent les noyaux de déconvolution. Une
étude de simulation a été réalisée pour démontrer la performance de l’estimateur proposé.

Mots-clés. Convolution circulaire, noyaux circulaires, coefficients de Fourier.

Abstract. The problem of nonparametrically estimating a circular density from data
contaminated by angular errors is considered. A kernel-type estimator whose weights are
reminiscent of deconvolution kernels is proposed for the task. A simulation study has
been carried out to show the performance of the proposed estimator.

Keywords. Circular convolution, circular kernels, Fourier coefficients.

1 Introduction

Circular data arise when the sample space is the unit circle. In particular, a circular
observation can be represented as a point on the circumference of the unit circle and,
once a zero direction and a sense of rotation have been chosen, can be measured by an
angle ranging, in radians, from 0 to 2π. Circular data are common in biology, meteorology
and geology. For a comprehensive account of statistics for circular data see, for example,
Mardia and Jupp (2009).

The problem of estimating a circular density with data corrupted by measurement
errors has been studied by Efromovich (1997) who proposed an estimator constructed as
a truncated trigonometric series of the target density where the theoretical coefficients
are replaced by empirical ones. Comte and Taupin (2003) derived an adaptive penalized
contrast estimator, while Johannes and Schwartz (2009) proposed an orthogonal series
estimator optimal in the minimax sense.
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In the linear setting the problem of estimating a density when variables are observed
with errors has been widely studied. A very popular method to deal with this problem
is based on kernel estimation. For an exhaustive treatment of kernel density estimation
in the errors-in-variables context and related problems, see Delaigle (2014) and the refer-
ences therein. In the directional setting the kernel-based methods for errors-in-variables
problems seem to be substantially unexplored, and here we propose to extend this ap-
proach to circular density estimation. In Subsection 2.1 we recall some preliminaries, and
then in Subsection 2.2 we briefly discuss the construction of the kernel estimator to tackle
this problem. Finally, Subsection 2.3 collects some simulation results.

2 A kernel circular deconvolution estimator

2.1 Preliminaries

The characteristic function of a whatever circular random variable Θ, with absolutely
continuous density fΘ, is the sequence of complex numbers {ϕΘ(`), ` = 0,±1,±2, . . .},
where

ϕΘ(`) =

∫ 2π

0

ei`θfΘ(θ)dθ.

The complex number ϕΘ(`) is also referred to as the `th trigonometric moment of Θ about
the zero direction, and can be expressed as ϕΘ(`) = α` + iβ`, where

α` = E[cos(Θ)] and β` = E[sin(Θ)].

Then, assuming that fΘ is a square integrable function on [0, 2π), for θ ∈ [0, 2π), one
can recover fΘ(θ) from the Fourier series expansion

fΘ(θ) =
1

2π

∞∑
`=−∞

ϕΘ(`) exp(−i`θ) =
1

2π

{
1 + 2

∞∑
`=1

(α` cos(`θ) + β` sin(`θ))

}
.

Now assume that fΘ is unknown, and let Θ1, . . . ,Θn be a random sample of angles
from fΘ. The kernel estimator of fΘ at θ ∈ [0, 2π) is defined as

f̂Θ(θ;κ) =
1

n

n∑
i=1

Kκ(Θi − θ),

whereKκ is a circular kernel, that is a periodic, unimodal, symmetric density function with
concentration parameter κ > 0, which admits a convergent Fourier series representation

Kκ(θ) =
1 + 2

∑∞
`=1 γ`(κ) cos(`θ)

2π
.

Details for kernel estimation of circular density are provided by Di Marzio et al.(2011).
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2.2 Deconvolution circular kernels

Now, consider an errors-in-variables density estimation problem, where we wish to esti-
mate the circular density fΘ of Θ but we observe n independent copies of the circular
random variable

Φ = (Θ + ε)mod(2π),

where ε is a random angle independent of Θ, whose density fε is assumed to be a known
circular density symmetric around zero. We also assume that fΘ, fε and fΦ are square
integrable densities on [0, 2π) such that they admit convergent Fourier series representa-
tions.

Then the density fΦ is the circular convolution of fΘ and fε, i.e., for θ ∈ [0, 2π),

fΦ(θ) =

∫ 2π

0

fΘ(ω)fε(θ − ω)dω,

so, the estimation of fΘ reduces to a circular deconvolution density problem. The identity
above implies that, for ` ∈ Z, ϕΦ(`) = ϕΘ(`)ϕε(`), so assuming ϕε(`) 6= 0, a naive
estimator of fΘ at θ ∈ [0, 2π) could be

f̃Θ(θ) =
1

2π

∞∑
`=−∞

ϕ̂Φ(`)

ϕε(`)
e−i`θ,

where ϕ̂Φ(`) = 1
n

∑n
j=1 e

i`Φj is the empirical version of ϕΦ(`). A regularized version of
the above estimator can be constructed by using the characteristic function of a circular
kernel Kκ, say ϕKκ(`), as a damping factor. This yields

f̃Θ(θ;κ) =
1

n

n∑
j=1

K̃κ(Φj − θ),

where

K̃κ(Φj − θ) =
1

2π

∞∑
`=−∞

ϕKκ(`)

ϕε(`)
ei`(Φj−θ)

=
1

2π

{
1 + 2

∞∑
`=1

γ`(κ)

λ`(κε)
cos(`(Φj − θ))

}
,

with γ`(κ) and λ`(κε) respectively being the `th coefficients of the cosine terms in the
Fourier series representation of Kκ and fε.

In the linear setting, the smoothness of a density can be determined by the rate of decay
of the Fourier transform: a polynomial decay characterizes ordinary smooth functions,
while an exponential decay characterizes supersmooth ones. Similarly, the smoothness of
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NSR Target density Error density n=100 n=200 n=400
5% vM(0, 2) wL(0, 0.1) 0.960 1.006 0.998
16% vM(0, 8) wL(0, 0.1) 0.995 0.958 0.915
44% vM(0, 2) wL(0, 0.33) 0.866 0.857 0.839
47% vM(0, 2) wC(0, 0.80) 0.966 1.015 1.085

Table 1: Comparison between the deconvolution estimator and the circular kernel density
one (AISEdec/AISEkde) over 500 samples of sizes 100, 200 and 400 drawn from target
populations contaminated by noise obtained by different error populations.

a circular density can be defined according to the rate of decay of the coefficients in its
Fourier series representation. Recalling that for the density of a wrapped distribution,
the trigonometric moment of order ` corresponds to the characteristic function of the
unwrapped one at (integer) `, we have that examples of supersmooth densities include
the densities of wrapped Normal and wrapped Cauchy distributions, while the densities
of wrapped Laplace and wrapped Gamma distributions are examples of ordinary smooth
circular densities. As we will see in the simulation results, the smoothness of the error
density may affect the performance of the proposed estimator.

2.3 Simulations

We compare the performances of our estimator and the standard kernel density one in a
simulation setting. In particular, we consider the von Mises (vM) density with zero mean
direction and different values of the concentration parameter as the target density fΘ,
and the wrapped Laplace (wL) or the wrapped Cauchy (wC) with zero mean direction
and different values of the concentration parameters as the error density fε.

Notice that the concentration parameter takes non-negative real values for both vM
and wL but with opposite meaning in the sense that for the latter one lower values of the
concentration parameter give higher concentration. Differently, for wC the concentration
parameter ranges from 0 to 1 with the concentration increasing with the value of the
parameter.

The noise-to-signal ratio (NSR), which is defined as the ratio between the circular
variances of ε and Θ, ranges from 5% to 47%.

We generate 500 samples of sizes n = 100, 200 and 400. To evaluate the performances
of the estimator, we calculate the averaged integrated squared error (AISE), and the ratio
AISEdec/AISEkde, where dec and kde respectively stand for f̃Θ(θ;κ) and f̂Θ(θ;κ). The
parameter κ is selected by least squares cross-validation. As it can be seen in Table 1,
the deconvolution estimator outperforms the standard one especially when the NSR is
moderate or the error density is ordinary smooth.
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