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Abstract. We consider the nonparametric kernel method for the hazard rate function
estimation. Since the hazard rate function is positively supported, we use the asymmetric
kernels in order to ovoid the problem of high bias in the boundary region. In this work,
we consider the class of generalized Birnbaum-Saunders (GBS) kernels because of its
flexibility. The asymptotic properties and optimal bandwidth are established for the
proposed estimator. Finally we conduct simulation study for sample finite performance.

Keywords. Bandwidth, hazard rate function, kernel method, nonparametric estima-
tion.

Résumé. Dans ce présent papier, nous nous intéressons à l’estimation non paramètrique
du taux de défaillance avec la méthode du noyau. Puisque le taux de défaillance est défini
sur le support positif [0,∞[, nous utilisons un noyau asymmétrique afin d’éliminer le
problème d’effet de bord, qui engendre un biais de plus en plus élevé en se rapprochant
du bord. A cet effet nous proposons d’utiliser le noyau GBS associé (Birnbaum-saunders
généralisé).
Nous déterminons les propriétés asymptotiques de l’estimateur proposé ainsi que le paramètre
de lissage optimal. La performance de l’estimateur est étudiée par simulation des données
suivants des lois de fiabilité telles que: lognormale, BS, Gamma.

Mots-clés. Estimation non paramètrique, taux de défaillance, méthode du noyau,
effet de bord.

1 Introduction

Nonparametric kernel method using symmetric and asymmetric kernels is widely devel-
oped in statistical literature for density, regression and hazard rate functions estimation.
In this paper, we focus on kernel estimation of the hazard rate function, based on a ran-
dom variables T1, T2, ..., Tn (independent and identically distributed), which represent the
survival times. Since the hazard rate function is positively supported, then it is necessary
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to use asymmetric kernel instead of the symmetric one, in order to avoid the problem of
high bias in the boundary region, which called boundary effect. The hazard rate function
is already studied using inverse Gaussian, reciprocal inverse Gaussian (RIG) and Weibull
kernels, by Salha (2012), Salha (2012) and Salha and al. (2014), respectively; see also
Bouezmarni and al (2011), Bouezmarni and al (2006) for censored data using gamma
kernel. The aim of this work is to propose a new kernel estimator of the hazard rate
function using the class of generalized Birnbaum-Saunder (GBS kernels), which has as
particular cases, BS classical (BS), BS-power exponential (BS-PE) and BS-student (BS-
t), see Marchant and al (2013) in the context of the density estimation. The asymptotic
properties are established and the optimal bandwidth is obtained using plug-in method.
Finally, a simulation study is conducted to test the performance of the proposed GBS
kernel estimator.

1.1 Short review on generalized Birbaum Saunders kernels

Let T be a random variable that represent a lifetime of an item, has the probability
density function f , distribution function F and survival function R witch are defined on
the positive support [0,∞[. We consider a random sample T1, T2, ..., Tn from a variable
T .

The kernel estimator of the probability density function (pdf), based on GBS kernels
is proposed by Marchant and al (2013), and is given as follows

f̂GBS(t) =
1

n

n∑
i=1

K
GBS(h

1
2 ,t,g)

(Ti). (1)

Where K
GBS(h

1
2 ,t,g)

is the GBS kernel given by
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(2)
Where h is the bandwidth, t is the target, c is the normalization constant and g = g(u)
with u > 0 is a real function that generates the probability density (pdf) of the random

variable Z, such that fZ(z) = cg(z2), z ∈ R, where Z = 1
α

(√
T
β
−

√
β
T

)
; see Marchant

and al (2013), Fang and al (1990) for more details.

1.2 GBS kernel estimator of the hazard rate function

The hazard rate function represents the probability that an item with age t will fail in
interval (t,t+dt), for small dt > 0, defined as

λ(t) = lim
dt→0

P (t ≤ T ≤ t + dt/T > t)

dt
, t > 0.
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Which can be written as

λ(t) =
f(t)

1− F (t)
=

f(t)

R(t)
, t > 0.

The proposed estimator of the hazard rate function, using the estimator in (1), is given
by

λ̂GBS(t) =
f̂GBS(t)

R̂GBS(t)
=

1
n
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By replacing the expression of GBS kernel defined in (2), we get
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Where h is the bandwidth parameter, such that h = h(n)→ 0 when n→∞, c is the
normalization constant and g is a generator.

2 Asymptotic properties and bandwidth choice

The bias, variance, mean squared error (MSE) and mean integrated squared error (MISE)
of the GBS kernel estimator of the hazard rate function are given in proposition 1 and
proposition 2.

Proposition 1 The bias and the variance of the kernel estimator λ̂GBS, are given by

Bias(λ̂GBS(t)) =
hu1(g)(tf ′(t) + t2f ′′(t))

R(t)
+ o(h). (5)

V ar(λ̂GBS(t)) =
n−1h−

1
2 c2t−1λ(t)

cg2R(t)
+ o(n−1h−

1
2 ). (6)

Proposition 2 The mean squared error (MSE) and the mean integrated squared error
(MISE) of the kernel estimator λ̂GBS are given by

MSE(λ̂GBS) =
1

R2(t)
MSE(f̂GBS). (7)

MISE( ˆλ(t) =
1

4
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(8)
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Where f ′ and f ′′ are respectively the first and the second derivatives of the density f , cg2 is
the normalization constant, such that

∫
R

g2(z2)dz = 1
cg2

, z ∈ R and uk = uk(g) = E(Uk),

with U = Z2 is a random variable following a generalized chi-squared distribution with
one degree of freedom denoted by, U ∼ Gχ2(1, g).

The performance of the kernel method depends on the bandwidth h, which controls
the smoothness of the estimator. The optimal bandwidth of the proposed estimator λ̂GBS

is obtained by using the plug-in method and is given by

hopt =

 c2
∫∞

0
t−1f(t)
R2(t)

dt

cg2u2
1(g)

∫∞
0

(
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2
5
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2
5 . (9)

3 Simulation study

In this section, we evaluate the performance of the proposed estimator by using MC
simulation. We simulate data from the distributions lognormal, BS and gamma.
The experiment are based on 100 random samples of length n=200, n=500, n=1000.
We simulate the samples from the distributions, BS(2, 3), logN (2, 3) and G(3, 1/2) with
pdf given respectively by

fBS(α,β)(t) =
1

2αβ
√

2π

[(
β

t

) 1
2

+

(
β

t

) 3
2

]
exp

[
− 1

2α2( t
β

+ β
t
− 2)

]
, α > 0, β > 0.

fLN(µ,σ)(t) =
1

xσ
√

2π
exp(−(ln(x)− µ)2

2σ2
), σ > 0, µ ∈ R.

fGam(α,β)(t) = tα−1βα exp(−βx)

Γ(α)
, α > 0, β > 0.

After that we estimate the hazard rate function using BS, BS-PE (with v=2) and BS-t
(with v=5) kernels, and we determine the estimation error produced by each estimator

using the integrated squared error (ISE), given by ISE(λ̂(t)) =
∫∞

0

(
λ(t)− λ̂(t)

)2

dt.

The results are reported in the Table 1.
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Size Distribution BS BS-PE BS-t
BS(2,3) 0.00807 0.01700 0.00981

n=200 LN(2,3) 0.02682 0.04774 0.04835
Gam(3,1/2) 0.01956 0.02740 0.02825

BS(2,3) 0.00407 0.00740 0.00543
n=500 LN(2,3) 0.02501 0.06187 0.04201

Gam(3,1/2) 0.01819 0.02035 0.02447
BS(2,3) 0.00257 0.00424 0.00436

n=1000 LN(2,3) 0.01200 0.04130 0.03491
Gam(3,1/2) 0.01552 0.01874 0.02301

Table 1: Average ISE

4 Conclusion

In this paper we have proposed a new kernel estimator of the hazard rate function using
a class of GBS kernel, in particular BS, BS-PE and BS-t kernels. We have established
the asymptotic properties of the estimator and estimated the bandwidth parameter using
plug-in method. The simulation study has conducted in order to evaluate the performance
of the proposed kernel estimator. The results have showed a good performance of the
estimator.
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