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Résumé. Le but de ce travail est de développer une procédure de test qui détermine
le rang du bruit dans un processus stochastique multidimensionnel à partir d’observations
discrètes de ce processus sur un intervalle de temps fixe [0, T ] échantillonné avec un pas de
temps ∆. Nous utilisons l’approche de perturbation aléatoire, utilisée pour l’estimation
du rang de matrices non aléatoires, dans le cas d’un processus de diffusion stochastique.
Nous menons une étude de simulation sur des modèles stochastiques multidimensionnels
de l’activité neuronale: le modèle FitzHugh-Nagumo et une approximation stochastique
du processus de Hawkes. Notre objectif principal est de contrôler le taux de perturbation,
qui garantit des statistiques non dégénérées utilisées dans le test, et d’étudier son influence
sur la précision du test pour une taille de pas fixe ∆.

Mots-clés. Tests statistiques, diffusions hypoelliptiques, modèle neuronal FitzHugh-
Nagumo, statistique computationnelle

Abstract. The aim of this work is to develop a testing procedure which determines
the rank of the noise in a multidimensional stochastic process from discrete observations
of this process on a fixed time interval [0, T ] sampled with a time step ∆. We use the ran-
dom perturbation approach, used for non-random matrix rank estimation, to a stochastic
diffusion process. We conduct a simulation study on multidimensional stochastic mod-
els of neuronal activity: FitzHugh-Nagumo model and a stochastic approximation of the
Hawkes process. Our primary goal is to control the perturbation rate, which ensures a
non-degenerate statistics used in the test, and study its influence on the test accuracy for
a fixed step size ∆.

Keywords. Statistical tests, hypoelliptic diffusions, neuronal FitzHugh-Nagumo model,
computational statistics
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1 Introduction

Stochastic diffusions became a classical tool for describing a neuronal activity, either of a
one single neuron (Ditlevsen and Samson, 2012, Höpfner et al., 2016, Leon and Samson,
2017), or a large network of neurons (Ditlevsen and Löcherbach, 2017, Ableidinger et al.,
2017). However, the techniques which would allow us to establish a rigorous link between
a specific model and available neurophysiological data is often missing.

The open question is the source of stochasticity in spiking activity. One point of view
is that both the membrane and the ion channels of the neuron cell are affected by noise.
Another position is that only the ion channels have a stochastic behaviour and that their
concentration in cell explicitly defines the membrane potential. The question is then
how to test both hypotheses with extracellular recordings of the membrane potential. For
network-scale neuronal models, the estimation of the noise rank is equivalent to estimating
a number of populations of different types of neurons in the network.

The question boils down to a problem of a covariance matrix rank estimation and
constructing a statistical test of the rank. Our aim is to challenge this problem with
the help of numerical approximation methods for stochastic diffusions and properties of
matrix determinants, following works of Jacod et al. (2008), Jacod and Podolskij (2013).

2 Model

Consider a d-dimensional continuous Itô semimartingale Xt, given on some filtered proba-
bility space (Ω,F , P ), which is observed at equidistant times ∆ over a time interval [0, T ].
In a vector form it can be written as

dXt = Atdt+BtdWt, (1)

where Wt is a standard q-dimensional Brownian motion, At is a d-dimensional drift pro-
cess, Bt is a Rd×q-valued volatility process, continuous in time. We further assume that
the solution of (1) defined on (Ω,F , P ) can be represented in the following form:

Xt = X0 +

∫ t

0

Asds+

∫ t

0

BsdWs

Bt = B0 +

∫ t

0

bsds+

∫ t

0

vsdWs

At = A0 +

∫ t

0

b′sds+

∫ t

0

v′sdWs

vt = v0 +

∫ t

0

b′′sds+

∫ t

0

v′′sdWs,
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where b′t is Rd-valued, bt and v′t are Rd×q-valued, vt and b′′t are Rd×q×q-valued, and v′′s
is Rd×q×q×q-valued, all those processes are adapted. Finally, the processes bt, v

′
t, v

′′
t are

càdlàg and the processes b′t, b
′′
t are locally bounded.

Our goal is to determine the rank r0 of the matrix BBT and construct a statistical
test which allows to test the null hypothesis r = r0 against the alternative r 6= r0 from
discrete observations of the process (Xi∆, i = 1 . . . N).

3 Statistical test

To begin with, let us recall some results from matrix algebra. Let Σ1 be an unknown
d × d matrix of unknown rank r0. We assume that it is hard to compute the rank r0

straightforwardly, but assume that there is a way to compute det (Σ1 + hΣ2) for some
h� 1 and for some known d× d matrix Σ2. Recall the following property of the matrix
determinant. In 1 × 1-dimensional (scalar) case, det(Σ1 + hΣ2) = det Σ1 + h det Σ1. In
2×2-dimensional case it is not that simple anymore, but we still can express det(Σ1+hΣ2)
as follows:

det Σ1 + h2 det Σ2 + h
[
γ1

1(Σ1,Σ2) + γ2
1(Σ1,Σ2)

]
,

where γj1, j = 1, 2 stands for a determinant of a matrix, whose j-th column is a j-th
column of a matrix Σ1, and the remaining — the corresponding column of a matrix Σ2.

Let us denote by γr a sum of the determinants of all the matrices obtained with a
permutation of that type, that is with r columns taken from matrix Σ1, and remaining
d − r — from matrix Σ2. Indexes are preserved: i-th column of the resulting matrix is
either i-th column of Σ1 or i-th column of Σ2. Then for d× d-dimensional matrices, the
determinant can be computed as follows:

det (Σ1 + hΣ2) = det Σ1 + hγd−1(Σ1,Σ2) + · · ·+ hd det Σ2,

Formal proof of this result can be found in Jacod and Podolskii (2013) (Lemma 6.1).
Let us now assume that the rank of the matrix Σ1 is equal to r0 = d − 1, and that

h � 1. Then the term det Σ1 vanishes, and the most important term, determining the
behaviour of det (Σ1 + hΣ2) is hγd−1(Σ1,Σ2). If r0 = d − 2, then hγd−1(Σ1,Σ2) vanishes
as well, and so on. Finally, we have:

det (Σ1 + hΣ2) = hd−r0γr0(Σ1,Σ2) +O(∆d−r0+1).

This naturally leads to the following result, which is the core of the estimating and testing
procedure:

det
(

Σ1 + 2hΣ̃2

)
det
(

Σ1 + hΣ̃2

) → 2d−r0 as h→ 0
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Then, for h small emough, r0 can be approximated as follows:

r0 ≈ d−
log

det(Σ1+2hΣ̃2)
det(Σ1+hΣ̃2)

log 2
. (2)

We use this property to study the empirical variance of the process (1), computed
from the observations (Xi∆, i = 1, . . . , N) on the fixed time interval. We introduce two
new processes with 2 different orders of perturbation, namely, for k = 1, 2:

X̃k
t = Xt + Σ̃

√
k∆W̃t, (3)

where Σ̃ is an arbitrary chosen d × q non-random matrix of full rank, and W̃t is a q-
dimensional Brownian motion. Key statistics S1

t and S2
t which will be plugged in formula

(2) are defined as:

Skt = 2d∆

[t/2d∆]−1∑
i=0

ski , k = 1, 2,

where

ski = det

[
X̃

(k)
(2id+k):(2id+kd) − X̃

(k)
2id:(2id+kd−k)√

k∆

]2

.

Here by each matrix X̃
(k)
(2id+k):(2id+kd) − X̃

(k)
2id:(2id+kd−k) we mean d successive increments of

the process, taken with step k∆ and written column-by-column, so that in the end we
obtain at most

[
N
2d

]
− 1 matrices of dimension d × d. Also note that the increments are

not overlapping, so that each i-th matrix is independent of its neighbors. The estimator
of the rank BBT is then defined as

R̂(T,∆) = d− log(S2
T/S

1
T )

log 2
,

and its variance is computed as

V (T,∆) = V ar
[
R̂(T,∆)

]
=

(
E[S1

T ]

E[S2
T ]

)2

V ar[S2
T ]− 2

E[S1
T ]

E[S2
T ]
Cov[S1

TS
2
T ] + V ar[S1

T ]

(E[S1
T ] log 2)2

.

Then we can use the following result for constructing the test (see Corollary 3.6 in
Jacod and Podolskij (2013)):

R̂(T,∆)− r0√
∆V (T,∆)

L−→ ζ,

where ζ ∼ N (0, 1).
The null hypothesis ”rank of the matrix BBT equals to r” is then rejected if the

computed value of the estimator belongs to the following critical (rejection) region:

C(α)T =
{
ω :
∣∣∣R̂(T,∆)− r

∣∣∣ > zα
√

∆V (T,∆)
}
,

where zα is the symmetric α-quantile of N (0, 1).
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4 Simulation study

We test the numerical performance of this estimator on simulated diffusion paths of the
neuronal 2-dimensional FitzHugh-Nagumo model (both with full-rank and degenerate
diffusion matrix) and the stochastic approximation of the mean-field limit of the Hawkes
process with arbitrary number of memory variables. Naturally the rate of perturbation
defined by a matrix Σ̃ influences the accuracy of the test, especially when the step size ∆ is
not sufficiently small. We aim to study and justify the optimal choice of the perturbation
rate for models of different structure and explain, how the testing procedure can be
adjusted.
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