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1 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France.
Mail : {emilie.devijver, remi.molinier}@univ-grenoble-alpes.fr
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Résumé. L’inférence de réseaux permet d’évaluer et de représenter les dépendences
entre des variables continues. Les modèles graphique gaussiens ont été développés pour
résoudre ce problème en grande dimension sous certaines hypothèses. Ce papier porte
sur la stabilité d’une procédure d’inférence appelée shock et introduite dans Devijver
and Gallopin (2018), qui infère un réseau modulaire via une matrice de covariance diago-
nale par blocs. Cette structure a beaucoup d’avantages, dont la réduction de dimension,
l’interprétabilité et la stabilité. Ce dernier point est explicité dans ce papier, d’un point
de vue théorique (via des arguments topologiques) et d’un point de vue numérique.
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Abstract. Network inference is widely utilized to evaluate and represent dependencies
between continuous variables. Gaussian graphical models have been developed and tackle
the high-dimension problem through several assumptions. This presentation deals with
the stability of a procedure called shock and introduced in Devijver and Gallopin (2018),
which infers a modular network using a block-diagonal decomposition of the covariance
matrix. This structure has strong advantages, among such reducing the dimension, facil-
itating the interpretation and being stable. The stability of the procedure is supported
by strong theoretical guarantees based on topological tools, intensive simulations and real
data analysis.
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1 Introduction

Evaluating the correlations between variables has become an important question, as with
real data sets the independence assumption is clearly violated. Among others tools, graph-
ical models are popular for their interpretation, and Gaussian graphical models (GGMs)
are famous for the Markov property, relating the edges of the corresponding graph to
the non-zero coefficients of the inverse covariance matrix. In high-dimensional contexts,
this sparsity has been studied thorough an `1 penalized log-likelihood method (Friedman
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et al., 2007). In Devijver and Gallopin (2018), the authors proposed a non-asymptotic
model selection procedure, called shock, to infer a modular network, supported by the-
oretical guarantees ensuring that the procedure is adaptive minimax to the structure of
the covariance matrix.

One main drawback of the GGM’s method is the stability for finite distance, partic-
ularly for methods based on the `1 penalized log-likelihood: if we run the methods on
two data sets coming from the same model with small sample size, the inferred networks
will be different. Stability, as reproducibility, is very important in statistics, as described
in Yu (2013). Without stability, interpretability is difficult, whereas interpretability is a
major advantage of graphical models. One example of applications of graphical models
are regulatory networks inferred from omics data with a limited number of observations
(Akbani et al, 2014).

Some methods have been proposed to stabilize the variable selection, initially for the
Lasso estimator in the general framework of the linear regression, more recently for the
GGM’s. In Bach (2008) and Meinshausen and Buhlmann (2010), the author propose
to subsample the observations, run a model on each sample, and keep variables selected
every time on every samples, or a high fraction of the samples. In both papers, theoretical
results guarantee good performances asymptotically in the number of observations. For
the specific context of network inference, Liu et al (2010) introduced StARS. However,
all those methods require computation, because they are rely on subsampling. Moreover,
large sample size are needed to subsample.

In this presentation, we propose to prove, theoretically and numerically, that the
procedure shock is stable by construction, without adding any stabilization step by sub-
sampling.

2 Model and method

Let y = (y1, . . . ,yn) be a sample in Rp from a multivariate normal distribution with
density φp(0,Σ) where Σj,j = 1 for all j ∈ {1, . . . , p}. Our goal is to study the stability of
the network inference method called shock. The network is decomposed onto independent
components by clustering the variables, using single linkage hierarchical clustering. The
choice of the final model is performed using the slope heuristics.

The output of hierarchical methods can be regarded as finite ultrametric spaces, which
we consider with the Gromov-Hausdorff distance. We denote by (Y, uY ) the finite ultra-
metric space corresponding to the output yielded by single linkage hierarchical clustering,
where similarities are computed through the empirical covariance matrix S. Roughly
speaking, a dendogram (X, θ) over a finite set X is defined to be a nested family of par-
titions, usually represented graphically as a rooted tree, with θ : [0,∞) → P(X) the
parameter representing the notion of scale, and reflecting in the height of the different
scales. θ must satisfy conditions, as the initial decomposition of the space is the space
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itself; for large enough parameter, the partition of the space becomes trivial. Remark
that from Theorem 9 in Carlsson and Mémoli (2010), dendograms and ultrametrics are
equivalent through the one to one mapping denoted Ψ, such that Ψ(θ) is defining the
ultrametric and Ψ−1(u) is denoting the dendogram. Thus, if X = ∪nXn denotes the set of
finite metric spaces, and U = ∪nUn the set of all finite ultrametric spaces, a hierarchical
clustering method is defined to be a map

I : X → U s.t. (X, d) ∈ Xn 7→ (X, u) ∈ Un, n ∈ N.

As an example, we consider the maximal sub-dominant ultrametric: there is a canonical
construction, leading to I∗ : X → U given by (X, d) 7→ (X, u∗) where

u∗(x, x′) := min

{
max

i=0,...,k−1
d(xi, xi+1) s.t.x = x0, . . . , xk = x′

}
I∗ corresponds to the single linkage hierarchical clustering, which is stable, as proved in
Carlsson and Mémoli (2010). The single linkage plays an important role here, complete
linkage and average linkage not satisfying the same property.

In shock, the dendogram is cut using the slope heuristic, a non asymptotic model
selection criterion having good guarantees in this framework (see Devijver and Gallopin,
2018). The slope heuristics is choosing a time tSH such that the model selected is deduced
from (Ψ−1(u∗))(tSH). Then, the last step of shock consists in inferring in each module
a network using the graphical Lasso estimator, where the regularization parameter is
selected by the BIC as the dimension is no longer high.

In this presentation, we are interested in stability for network inference, in the sense
that, if two samples are generated from the same distribution, we want to measure how
close are the two inferred networks. The stability will be measured through the normal-
ized Hamming distance, defined by, for two graphs G1 and G2 with respective adjacency
matrices A1 and A2,

dnormH (G1, G2) =
‖A1 − A2‖1
‖A1‖1 + ‖A2‖1

.

3 Theoretical results for stability

First, we use a matrix version of the Bernstein inequality to control the concentration of
the empirical correlation matrix.

Lemma 1 Let y1 = (y1
1, . . . ,y

1
n) and y2 = (y2

1, . . . ,y
2
n) be two samples in Rp from the

same multivariate normal distribution with density φp(0,Σ), where Σ is a correlation
matrix. Denote S1 and S2 the two empirical correlation matrices. Then, with probability
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1− α, ‖S1 − S2‖ ≤ qp,n,α, where

qp,n,α =

{
4
√

2p2

3n
log(2p/α) if α ≥ 2p/ exp(3n/32)

32p
3n

log(2p/α) if α ≤ 2p/ exp(3n/32).

and where the norm corresponds to the spectral norm (the largest eigenvalue).

For a symmetric matrix A ∈ Rp×p with positive entries, we define, for (i, j) ∈
{1, 2, . . . , p}2, for Cp the complete simple graph over vertices set {1, . . . , p},

uA(i, j) =

{
0 if i = j,

min
{

max
k

(Aη(k),η(k+1)) | η a path from i to j in Cp

}
elsewhere.

This defines an ultrametric on {1, 2, . . . , p}. It is used with matrices A = 1 − S where
S is an empirical correlation matrix and 1 corresponds to the matrix with 1 for each
coefficient. Thus, the associated dendogram is defined by Ψ−1(uA), corresponding to the
one get by thresholding the matrix A.

Proposition 1 Let y1 = (y1
1, . . . ,y

1
n) and y2 = (y2

1, . . . ,y
2
n) be two samples in Rp from

the same multivariate normal distribution with density φp(0,Σ), where Σ is a correlation
matrix. Let S1 and S2 be the corresponding empirical correlation matrices and set u1 =
u1−|S1| and u2 = u1−|S2|.

Then, with probability 1− α, maxi,j |u1(i, j)− u2(i, j)| ≤ ‖S1 − S2‖max ≤ qp,n,α.

We are currently working on controlling the model selection step used to cut the two
dendograms (based on the slope heuristic) to obtain a similar bound for the two clusterings
produced by the shock procedure.

4 Real data analysis (Lingle et al., 2016)

In this section, we compare the performance in stability of the proposed method with
other methods introduced in the introduction, on a real data set BRCA (Lingle et al.,
2016). The results shown here are in whole based upon data generated by the TCGA
Research Network: http://cancergenome.nih.gov/. Results are similar for simulated
data and other real data sets.

We compare the following strategies for network inference: 1/GlassoBIC: graphical
lasso with regularization parameter chosen using the BIC criterion, 2/ shock: partition
is detected using the slope heuristic dimension jump, and the regularization parameters
in each graphical lasso problem are chosen using the BIC criterion, 3/STARS: graphical
lasso with regularization parameter chosen using the STARS criterion, 4/ BoLasso, 5/
StabilitySelection.
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We observe n = 900 individuals, and we restrict ourselves to the p = 200 most variables
genes. We decompose the 900 individuals into 17 subsamples of size n = 70, for which
we run every method. We compare all the graphs inferred for each method with the
normalized Hamming distance between each pair of graphs. As the computation time is
really different for the several methods, we also plot the CPU time to infer a network on
one data set. Results are provided in Figure 1.
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Figure 1: Results for the BRCA data set (Lingle et al., 2016). Left: normalized Ham-
ming distance between pairs of networks inferred on subsamples. Right: CPU time for
computing one network.
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